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ABSTRACT We present a simple and effective
algorithm RDOCK for refining unbound predictions
generated by a rigid-body docking algorithm
ZDOCK, which has been developed earlier by our
group. The main component of RDOCK is a three-
stage energy minimization scheme, followed by the
evaluation of electrostatic and desolvation ener-
gies. Ionic side chains are kept neutral in the first
two stages of minimization, and reverted to their
full charge states in the last stage of brief minimiza-
tion. Without side chain conformational search or
filtering/clustering of resulting structures, RDOCK
represents the simplest approach toward refining
unbound docking predictions. Despite its simplic-
ity, RDOCK makes substantial improvement upon
the top predictions by ZDOCK with all three scoring
functions and the improvement is observed across
all three categories of test cases in a large bench-
mark of 49 non-redundant unbound test cases.
RDOCK makes the most powerful combination with
ZDOCK2.1, which uses pairwise shape complementa-
rity as the scoring function. Collectively, they rank
a near-native structure as the number-one predic-
tion for 18 test cases (37% of the benchmark), and
within the top 4 predictions for 24 test cases (49% of
the benchmark). To various degrees, funnel-like
energy landscapes are observed for these 24 test
cases. To the best of our knowledge, this is the first
report of binding funnels starting from global
searches for a broad range of test cases. These
results are particularly exciting, given that we have
not used any biological information that is specific
to individual test cases and the whole process is
entirely automated. Among three categories of test
cases, the best results are seen for enzyme/inhibitor,
with a near-native structure ranked as the number-
one prediction for 48% test cases, and within the top
10 predictions for 78% test cases. RDOCK is freely
available to academic users at http://zlab.bu.
edu/�rong/dock. Proteins 2003;53:693–707.
© 2003 Wiley-Liss, Inc.

Key words: RDOCK; protein docking; docking re-
finement; energy minimization; neutral-
ized ionic side chains; binding free en-
ergy

INTRODUCTION

Protein-protein docking entails the computational predic-
tion of the 3-dimensional (3D) structure of a protein
complex starting from the 3D structures of the receptor
and the ligand. This problem has fascinated biophysicists
and computational biologists for over two decades1,2 be-
cause of its biological importance: a complex structure
necessarily reveals all structural details of the molecular
interaction. It continues to receive considerable attention
in the post-genomic era. Structural genomics aims to
determine the 3D structure of every protein in the cell, and
high throughput techniques such as yeast-two-hybrid and
protein microarray will eventually identify all protein-
protein interactions. Docking algorithms can be invalu-
able in the detailed investigation of these interactions, as
well as in the design of novel pharmaceuticals.

Despite a large body of work, the protein-protein dock-
ing problem is far from being solved. When individually
determined (or unbound) structures of the receptor and
the ligand are used, near-native orientations may be
scored poorly by a docking algorithm, since proteins un-
dergo conformational changes upon complex formation,
and most docking algorithms cannot capture these changes
effectively. A divide-and-conquer strategy is widely ac-
cepted in the docking field,3,4 with initial-stage algorithms
focused on retaining near-native structures (also called
hits) in a reasonably short list of predictions5–14 and
refinement algorithms aimed at ranking a hit at the top of
the list.8,15–20

The need of refinement algorithms for unbound docking
became evident in the early 1990s when initial-stage
rigid-body algorithms were powerful enough to explore the
entire 6D translational and rotational space. In each case,
high-scoring hits were found, among many false positives
with similar or better scores.21–25 Shoichet and Kuntz
performed a systematic investigation of refining unbound
docking predictions.22 They tested three protease/inhibi-
tor complexes, restraining the search to the known binding
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sites of the proteases. They reported that most scoring
functions, including surface area burial, solvation free
energy, packing and mechanism-based filtering, could not
distinguish hits from false positives, although total interac-
tion energy and electrostatic interaction energy of the
complex were somewhat better than other functions. Two
groups responded to this challenge: (1) Jackson and Stern-
berg15 first optimized hydrogen-bonding networks and
checked for unrealistically short distances between non-
bonded atoms in the structures, and then reevaluated an
energy function that included a continuum electrostatic
free energy obtained from solving the Poisson-Boltzmann
equation, a surface-area based hydrophobic free energy
and side chain conformational entropy loss. They reported
reliable discrimination between hits and false positives in
all three test cases, but only when molecular surface was
used as the descriptor of the hydrophobic effect, in contrast
to solvent accessible surface. (2) Weng et al. performed
energy minimization using CHARMM,26 and then com-
puted an effective binding free energy function containing
the Coulombic electrostatic energy with a distance-
dependent dielectric constant, a desolvation free energy
based on the Atomic Solvation Parameter (ASP) model27

and surface area based side chain entropy loss.28 This
effective binding free energy reliably differentiated hits
from false positives. Furthermore, systematic search of
interface side chain conformations using CONGEN29 prior
to energy minimization notably improved the discrimina-
tion.16

Sternberg and colleagues subsequently developed their
own initial-stage docking algorithm FTDOCK.5 They per-
formed a global search on six unbound enzyme/inhibitor
and four antibody/antigen test cases. They then subjected
the top predictions from the global search to filtering,
which was similar to using known receptor binding site
information. These filtered structures were later supplied
to a refinement algorithm MultiDOCK developed by the
same team.17 MultiDOCK included a two-step structure
refinement procedure (side chain rotamer search and
energy minimization), followed by the evaluation of an
energy scheme that included vacuum electrostatics, the
van der Waals (vdW) energy and a sophisticated desolva-
tion energy based on a soft sphere Langevin dipole model.
They also applied MultiDOCK to the previous Shoichet
and Kuntz dataset and showed good discrimination. The
results on the FTDOCK dataset were somewhat mixed: a
hit was ranked in the top four predictions for four out of
five enzyme/inhibitor test cases, but discrimination was
seen only for two out of four antibody/antigen test cases.
The same team consequently developed an empirical resi-
due-residue pair potential as an intermediate step be-
tween FTDOCK and MultiDOCK. The combination of the
pair potential and MultiDOCK was applied to the above
FTDOCK dataset. It placed a hit within the top five
predictions for all enzyme/inhibitor test cases, and within
the top 40 predictions for all antibody/antigen test cases.18

Some researchers do not make the refinement step an
independent method. Norel et al.30 applied a computer
vision-based docking algorithm to 19 unbound test cases

without any information of the binding site. The algorithm
only used shape complementarity as the scoring function.
The rank for the best hit ranged from 1 to 619, and was
within the top 10 for five test cases. The authors attempted
to refine the resulting predictions with buried surface
area, unsatisfied buried charges, and hydrogen bonds, but
observed no improvement.30 In another method by Palma
et al.,8 a Boolean-operation module first performed a
global search, and the resulting top 1,000 structures were
subjected to refinement by a function that incorporated
geometric complementarity, electrostatics, desolvation, and
a residue-residue pair potential. The relative contribution
of each of these terms was determined by a neural network
trained on roughly half of the test cases. The refinement
step significantly improved the results. Excluding ho-
modimers, there were 14 unbound test cases, among which
eight were in the training set. For these test cases, the
rank for the best hit ranged from 1 to 43. For the
remaining six test cases, no hit was found within the top
1,000 predictions for three test cases, and the ranks for the
best hits were 6, 13, and 50 for the remaining test cases.8

Totrov and Abagyan31 developed a two-step docking proce-
dure: rigid-body docking followed by ligand side chain
optimization using their Internal Coordinate Mechanics
strategy. The method was applied to 24 unbound test
cases, and the search was restricted to the known binding
site of the receptor. The scoring functions for both stages of
the procedure were quite elaborate, including smoothed
vdW (with separate terms for hydrogen and heavy atoms),
the Coulombic electrostatics with a distance dependent
dielectric constant, a hydrogen bonding potential, the
ASP-based solvation energy, and a hydrophobicity poten-
tial. The scoring function for the refinement stage also
included the internal energy of the ligand. The coefficients
for these energy terms were calibrated on the test set.
Fernandez-Recio and coworkers14 reported significant im-
provement by the refinement, in terms of both side chain
conformation and the rank of the best hit. A hit was ranked
as the best prediction for seven test cases, and within the
top 10 predictions for another seven test cases.

Camacho and Vajda20 are entirely focused on the refine-
ment stage of protein docking, and perform testing on
decoy sets. In one approach, a two-step filtering procedure
was first used to retain 100 structures for each test case,
500–1,000 steps of energy minimization were then per-
formed on all structures, followed by the evaluation of a
free energy expression that was the sum of the Coulombic
electrostatics, the Atomic Contact Energy (ACE)-based
desolvation free energy,32 and vdW. Successful discrimina-
tion was reported on two sets of decoys; both were mix-
tures of hits and false positives generated by a combina-
tion of superposition of bound docking, unbound docking,
and random perturbation of superposed complex struc-
tures.19 Later on, the same group developed another
method that sampled six rotational and translational
degrees of freedom with vdW constraints.20 Structures
were minimized between consecutive rigid-body search
steps. The method was tested on eight unbound test cases,
and could consistently obtain a hit with �2 Å ligand Root
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Mean Square Deviation (RMSD) from refining �10 Å
RMSD starting structures. The starting structures were
hand picked from the outputs of an initial stage algorithm
DOT.11 Both methods seem promising, and it would be
extremely interesting to test them on a complete set of
global search predictions generated by an initial stage
algorithm.

Our lab has invested substantial effort on developing a
fully automated rigid-body docking algorithm ZDOCK,
which focuses on the initial stage of docking unbound
protein structures.13,33,34 Due to the diverse nature of
protein interactions, the goal of ZDOCK is to retain at
least one hit in the first 2,000 predictions for as many test
cases as possible. To facilitate our own as well as others’
docking efforts, we have developed a large benchmark of
non-redundant test cases.35 All of our ZDOCK develop-
ments have been extensively tested on this benchmark.
ZDOCK performed competitively at the first CAPRI chal-
lenge, a community-wide blind test of docking algo-
rithms.36 Subsequent to CAPRI, we have been developing
refinement methods to improve upon ZDOCK predictions.

Since ZDOCK is a rigid-body docking algorithm, it
“tolerates” conformational changes by allowing small
clashes between the receptor and the ligand structures,
provided that the scores of false positives do not benefit
significantly from this treatment. All variants of ZDOCK
scoring functions have been designed with this consider-
ation in mind. Thus, the most direct approach to refining
ZDOCK predictions is to first relieve these structures from
clashes and then re-rank them with more detailed scoring
functions. Here we report such a simple and highly
effective refinement method RDOCK. We perform energy
minimization on the top 2,000 ZDOCK predictions per test
case, with special treatment for ionic side chains. All
structures that still have vdW clashes after minimization
are discarded. We then compute electrostatics and desolva-
tion energies for the remaining structures and rank them
according to the sum of these two energy terms.

RDOCK improves ZDOCK predictions generated using
all three scoring functions that have been recently devel-
oped in our laboratory.34 It is particularly effective on
refining the predictions generated with the pair-wise
shape complementarity (PSC) scoring function.33 At a 6°
rotational sampling density, PSC retains at least one hit in
the top 2,000 predictions for 42 out of 49 test cases in the
benchmark.33 Among these 42 test cases, RDOCK ranks a
hit as the number one prediction for 18 test cases, among
the top 10 predictions for 28 test cases and among the top
100 predictions for 38 test cases. This is far superior to the
best performance of ZDOCK, which is achieved with a
scoring function that combines PSC with electrostatics
and desolvation: 7, 18, and 27 test cases with a hit ranked
in the top 1, 10, and 100 predictions, respectively. Further-
more, for 10 test cases, RDOCK reports hits for all top
three predictions, and thus identifies the binding mode
unambiguously. We observe well-formed binding funnels
for these test cases. To the best of our knowledge, this is
the first demonstration of binding funnels for a large
number of test cases starting from global searches. RDOCK

performs the best for enzyme/inhibitor test cases, and a hit
is ranked as the top 1 and within the top 10 for 48% and
78% test cases, respectively.

It is difficult to make an exact comparison of RDOCK
with previous methods, since most previous work used
receptor binding site information, most of them were
tested primarily on enzyme/inhibitor, and the definitions
of hits could also be slightly different. Nevertheless, consid-
ering that our benchmark is the largest and most diverse
test set to date and our method is rapid to compute and
entirely automated, we believe that our results demon-
strate an improvement over previous work on docking
refinement.

METHODS
Energy Minimization of ZDOCK Structures

We start with the top 2,000 predictions for each test
case, generated using ZDOCK at a 6° rotational sampling
density with each of the following three scoring functions:
pairwise shape complementarity (PSC), the combination
of PSC with desolvation (PSC�DE; abbreviated PD), the
combination of PSC with desolvation and electrostatics
(PSC�DE�ELEC; abbreviated PDE). We previously as-
signed different versions of ZDOCK to reflect different
scoring functions: ZDOCK2.1 for PSC, ZDOCK2.2 for PD,
and ZDOCK2.3 for PDE.34 In order to test RDOCK, we
used version 0.0 of the benchmark developed in our lab,35

which contains 23 enzyme/inhibitor, 16 antibody/antigen,
and 10 other types of test cases. ZDOCK with PSC, PD, or
PDE retains at least one hit in the top 2,000 predictions for
42, 40, and 44 test cases, respectively. In this report, we
restrict ourselves to these test cases. Hits are predictions
with RMSD below 2.5 Å after superposition. Superposition
and RMSD calculation only involve the C� atoms of
interface residues, which are receptor (or ligand) residues
with at least one atom within 10 Å of any atoms of the
ligand (or receptor). PSC, PD, and PDE have been com-
pared extensively in a previous study,34 and the above
data sets are available from our website (http://zlab.bu.
edu/�rong/dock/).

Each ZDOCK prediction, which is a protein complex
structure, is subjected to 130 steps of Adopted Basis
Newton-Raphson (ABNR) energy minimization using the
molecular mechanics software CHARMM26 in three stages:

1. Removing clashes. We first perform 50 steps of minimi-
zation of vdW plus internal (bond and angle) energies.
All atoms are free to move. We have discovered that this
scheme is extremely effective in removing small clashes.
Most structures have favorable vdW energies after
minimization.

2. Optimizing polar interactions. We then minimize the
total energy (the sum of Coulombic electrostatics, vdW,
and internal energies) for 60 steps. Non-hydrogen at-
oms are harmonically restrained to their starting posi-
tions with a mass-weighted force constant of 20Kcal/
(mol*Å) during the minimization. We keep all ionic side
chains (Arg, Lys, Glu, and Asp) in their neutral states
during this stage of minimization. A distance depen-
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dent dielectric constant 4r (r being the distance) is used
throughout this study. “Turning off” charges prevents
them from dominating the total energy, and thus allows
polar interactions to be optimized first.

3. Optimizing charge interactions. We minimize the total
energy for another 20 steps without any constraint. All
charged residues are in their charged states during this
stage of minimization. The goal here is to optimize
charge interactions. Since the minimization is done in
vacuum (although the distance dependent dielectric
constant partially accounts for desolvation), too many
steps of minimization would inevitably lead to overesti-
mation of electrostatics, and therefore should be avoided.

We use the CHARMM 19 potential with extended atom
types and polar hydrogens throughout the study. It is
important to divide the energy minimization into three
stages with ionic side chains set to neutral in the first two
stages. Nonetheless, the exact number of steps in each
stage does not make a large impact on the performance of
RDOCK.

Re-ranking of Minimized Structures

We assume that if a complex structure still has clashes
after the energy minimization, it cannot be a hit. There-
fore, we discard all structures with vdW energies higher
than 10 kcal/mol after minimization. The electrostatics
and desolvation energies of the remaining structures are
computed. The electrostatics energy (�Eelec) is computed
using CHARMM, with a dielectric constant 4r and all ionic
side chains in their full charge states. We use the Atomic
Contact Energy (ACE)32 to estimate desolvation. ACE is
defined as the free energy difference between breaking two
protein-atom/water contacts and forming a protein-atom/
protein-atom contact and a water-water contact. The total
desolvation score of a protein complex (�GACE) is simply
the sum of the ACE scores of all receptor-ligand atom pairs
within a distance cutoff of 6 Å.

The scoring function of RDOCK is the sum of desolvation
and electrostatics:

�Gbinding � �GACE � � � �Eelec (1)

where � is a scaling factor, set to 0.9 in this study. For
ZDOCK, we combined electrostatics with desolvation and
the coefficient for electrostatics � was set to 1/7.34 In
RDOCK, since the electrostatics is rather accurate for
structures free of vdW clashes, the optimal value of � is
very close to 1. In fact, � � 1 leads to only slightly inferior
results.

Performance Evaluation

The performance of RDOCK and ZDOCK is evaluated
using success rate, as defined previously.33 Given the
number of predictions being evaluated for each test case
(NP), the success rate is the percentage of test cases in the
benchmark for which at least one hit has been found. Since
RDOCK is a refinement algorithm, we are only interested
in the success rates at NP � 100, ideally at NP � 1. The
minimization procedure in RDOCK only makes small local

changes to a structure, almost never large enough to turn a
non-hit into a hit. Thus, RDOCK cannot improve the test
cases for which ZDOCK hasn’t retained any hits in the top
2,000 predictions. However, in order to be consistent
across the publications from our laboratory, we have
included all such test cases in success rate calculations.

RESULTS
RDOCK’s Overall Performance on the Benchmark

The number of hits, the rank of the first hit, and the
RMSD of the first hit for each complex according to
ZDOCK(PSC)�RDOCK, which stands for ZDOCK with
PSC as the scoring function followed by RDOCK refine-
ment, are listed in Table I. In Table I, we have also
reproduced ZDOCK results with PSC and PDE as the
scoring functions from our previous work to facilitate
comparison.33,34 The reason that the “Hits” column for
ZDOCK(PSC)�RDOCK does not match up with the “Hits”
column for ZDOCK(PSC) is that the vdW interaction
energies for some hits are still higher than 10 kcal/mol
after minimization and these hits are discarded. In most
cases, all hits survive the vdW cutoff. For five enzyme-
inhibitor test cases (4HTC being the most extreme, and
1TAB, 1ACB, and 1CHO being the others), the majority of
hits are lost, but the ranks of the remaining hits are still
very high. The percentage of hits out of all predictions
remains largely unchanged after the vdW filtering. None-
theless, false positives with unfavorable vdW energies
tend to have favorable electrostatics and desolvation, and,
thus, filtering these out improves RDOCK performance.
Success rates are improved by �4% throughout NP � 100
(data not shown).

It is apparent from Table I that RDOCK substantially
improves the best rank of hits. Out of the 22 enzyme/
inhibitor test cases for which PSC retains at least one hit
in the top 2,000 predictions, RDOCK improves 14 test
cases, doesn’t affect 5 test cases (all of which have a hit
ranked as the number one prediction), and worsens 3 test
cases slightly (with ranks increased by 4, 5, and 10,
respectively). When ZDOCK(PSC)�RDOCK is compared
with ZDOCK(PDE), the former achieves a better rank for
the first hit for 15 test cases, worse for 4 test cases, and
they tie for 4 test cases (for all of these, a hit is ranked as
the number-one prediction). Out of the 14 antibody/
antigen test cases for which PSC retains at least one hit in
the top 2,000 predictions, RDOCK improves the rank of
the first hit for 11 test cases, and worsens the rank for the
remaining three test cases. When ZDOCK(PSC)�RDOCK
is compared with ZDOCK(PDE), the former achieves bet-
ter rank for the first hit in 11 test cases. Among the 6 test
cases in the “others” category for which ZDOCK(PSC)
retains at least one hit in the top 2,000 predictions,
RDOCK improves the ranks for 4 of them, worsens the rank
for only one of them, and does not alter the rank for the last
one (with a hit ranked as the number-one prediction). If we
compare ZDOCK(PSC)�RDOCK with ZDOCK(PDE), the
former achieves better rank for 4 test cases, worse for 1, and
the two methods tie for 1 test case (with a hit ranked as the
number-one prediction).
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Figure 1(a) compares the success rates of three ZDOCK
scoring functions on the entire benchmark (PSC, PD, and
PDE), with and without RDOCK refinement. In general,
RDOCK improves the predictions of all of these scoring

functions (solid curves being higher than dashed curves
over the whole range of NP). However, the improvement is
not uniform. As indicated in our previous publication,34

PD outperforms PSC, and PDE outperforms both PD and

TABLE I. Docking Performance with 6° Rotational Sampling Interval

Complexa

ZDOCK(PSC)�RDOCK ZDOCK(PSC) ZDOCK(PDE)

Hitsb Rankc RMSDd Hitsb Rankc RMSDd Hitsb Rankc RMSDd

1CGI 52 8 2.24 54 4 2.41 77 4 2.41
1CHO 37 1 1.28 66 1 1.67 99 3 1.57
2PTC 2 2 1.12 2 1,655 2.11 48 193 1.83
1TGS 101 8 2.03 107 3 1.83 109 3 2.22
2SNI 0 — — 0 — — 1 1,262 2.22
2SIC 23 1 1.17 24 241 1.68 52 11 2.37
1CSE 3 1 1.17 3 1,537 1.17 29 198 2.20
2KAI 3 141 2.36 3 1,399 2.47 16 388 1.61
1BRC 15 3 2.41 16 173 1.58 54 24 2.32
1ACB 20 1 1.86 38 25 1.33 93 18 1.33
1BRS 32 13 1.23 34 61 2.23 21 65 2.13
1JTG 60 13 1.54 69 3 1.52 82 1 1.52
1MAH 6 1 0.91 6 849 1.49 28 24 1.29
1UGH 4 1 2.08 4 305 2.37 20 8 2.25
1DFJ 10 1 2.48 15 37 2.48 51 1 2.48
1FSS 5 42 1.52 5 731 1.52 15 50 1.52
1AVW 24 2 2.00 28 45 2.07 52 3 2.07
1PPEe 270 1 0.69 272 1 0.59 393 1 0.90
1TABe 21 10 0.76 47 65 1.21 50 79 1.21
1UDIe 15 3 1.06 16 31 1.19 35 5 1.19
1STFe 42 1 1.04 42 1 0.88 83 1 0.88
2TECe 77 1 0.83 77 1 0.39 185 1 0.76
4HTCe 2 1 1.46 54 1 1.79 57 3 2.46

1MLC 3 2 1.65 3 1,106 2.10 17 128 1.65
1WEJ 4 4 0.91 4 1,396 1.07 22 183 1.04
1AHW 28 1 1.61 28 26 1.57 67 7 1.82
1DQJ 1 952 2.45 1 1,341 2.45 0 — —
1BVK 2 1314 1.64 2 974 1.89 2 821 2.34
1FBIe 1 53 2.15 2 1,786 2.15 5 642 2.03
2JELe 57 301 1.70 62 112 1.82 35 233 1.46
1BQLe 15 1 1.18 16 172 1.18 70 13 1.07
1JHLe 15 41 0.88 15 404 1.46 12 333 1.37
1NCAe 50 8 0.83 55 2 0.85 67 1 1.06
1NMBe 6 1 1.11 6 693 1.10 9 135 0.98
1MELe 51 1 1.37 52 12 1.19 71 3 1.19
2VIRe 3 80 1.19 3 476 1.03 3 1,101 1.03
1EO8e 0 — — 0 — — 2 1,497 0.96
1QFUe 10 29 0.95 10 407 1.17 18 388 1.14
1IAIe 0 — — 0 — — 3 997 1.70

2PCC 0 — — 0 — — 0 — —
1WQ1 25 16 1.91 26 5 1.37 54 15 1.31
1AVZ 0 — — 0 — — 0 — —
1MDA 0 — — 0 — — 0 — —
1IGCe 6 21 1.18 6 22 1.20 3 153 1.20
1ATNe 1 1 0.80 1 360 0.80 24 7 0.80
1GLAe 0 — — 0 — — 0 — —
1SPBe 68 1 0.70 75 1 0.61 112 1 0.61
2BTFe 13 1 0.95 13 32 0.68 35 2 0.95
1A0Oe 2 11 2.46 2 833 2.46 4 284 2.45

a4-letter Protein Data Bank (PDB) code for the crystal complex of a test case.
bOnly the first 2,000 predictions are evaluated. Hits are defined as docked structures with interface Ca RMSD � 2.5 Å from the crystal complex.
cRank of the best ranked hit. “—” indicates that no hit was found in the top 2,000 predictions.
dInterface Ca RMSD for the best ranked hit. “—” indicates that no hit was found in the top 2,000 predictions.
eUnbound/bound test cases.
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PSC. However, the success rates of RDOCK on the predic-
tions made by these three scoring functions do not remain in
this order. ZDOCK(PDE)�RDOCK is in general better than
ZDOCK(PD)�RDOCK. Interestingly, ZDOCK(PSC)�
RDOCK outperforms both ZDOCK(PD)�RDOCK and
ZDOCK(PDE)�RDOCK over the entire range of NP � 100,
with the improvement being most pronounced at NP � 1.

The discrepancy in RDOCK’s improvement can be better
understood if we analyze the success rates according to
individual categories [Fig. 1(b–d)]. For enzyme/inhibitor
[Fig. 1(b)], RDOCK improves ZDOCK(PSC) so much that
even though ZDOCK(PSC) is much worse than ZDOCK-
(PDE), ZDOCK(PSC)�RDOCK is much better than both
ZDOCK(PD) and ZDOCK(PDE). The success rate for
ZDOCK(PSC)�RDOCK is 78% at NP � 10 and 87% at NP �
20. Such accuracy is particularly impressive considering that
no biological information is used and the whole process is
entirely automatic. Interestingly, ZDOCK(PD)�RDOCK out-
performs ZDOCK(PDE)� RDOCK at most NP values, even
though ZDOCK(PDE) outperforms ZDOCK(PD) by a great
deal.

For antibody/antigen test cases [Fig. 1(c)], RDOCK also
improves upon ZDOCK with all three scoring functions.

ZDOCK(PDE) outperforms ZDOCK(PD), and accordingly
ZDOCK(PDE)�RDOCK outperforms ZDOCK(PD)�
RDOCK. Similar to enzyme/inhibitor test cases, RDOCK
improves upon ZDOCK(PSC) to the greatest extent,
so that ZDOCK(PSC)�RDOCK outperforms both
ZDOCK(PDE)�RDOCK and ZDOCK(PD)�RDOCK. The
improvement (�19%) is especially evident for NP � 10.
The success rate of ZDOCK(PSC)�RDOCK is 44% at NP �
10; although not as high as that for enzyme/inhibitor, it is
much higher than what has been reported in the past for
this category of test cases.

For four out of a total of ten test cases in the “others”
category (2PCC, 1AVZ, 1MDA, and 1GLA), ZDOCK with
any of the three scoring functions did not retain any hits
within the top 2,000 predictions, due to a number of
reasons including backbone conformational changes, low
binding affinities, and ZDOCK’s tendency of identifying
surface pockets.34 As mentioned before, RDOCK is not
able to improve upon these test cases. Thus, the success
rate of RDOCK is at most 60% for this category. Figure
1(d) indicates that RDOCK improves upon ZDOCK(PDE)
and ZDOCK(PD) only at small NP values (NP � 10 for PDE
and NP � 50 for PD). Yet, RDOCK improves upon

Fig. 1. Success rates of ZDOCK with (solid lines) or without (dashed lines) RDOCK refinement. We compare three ZDOCK scoring functions: PSC
(black), PD (red), PDE (blue). We consider the performance on (a) the entire benchmark, as well as in the (b) Enzyme/inhibitor, (c) Antibody/antigen, and
(d) Others categories. The success rate is defined in Methods. It reflects the average ability of a method in ranking the first hit. Hits are predictions with
interface C� RMSD � 2.5 Å (see Methods for more details).
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ZDOCK(PSC) throughout the entire NP range, and
ZDOCK(PSC)�RDOCK is clearly the best performer. Ex-
cept for the four aforementioned test cases for which
ZDOCK does not retain any hits, RDOCK improves the
first rank for the remaining 6 test cases to 21 or better, and
thus achieves its maximal success rate of 60% at NP � 21.

Impact of Neutral Side Chains During
Minimization

Our strategy of using all neutralized side chains for most
minimization steps and performing a brief minimization
with full charges at the end is crucial to RDOCK’s perfor-
mance. If we keep all charged residues in their full charge
states throughout the minimization, RDOCK provides no
improvement over ZDOCK with any scoring function (data
not shown). Figure 2 indicates the impact of our special
treatment of ionic side chains. At the end of the second
stage of minimization (first 50 steps without electrostatics
and the next 60 steps with electrostatics but with neutral-
ized side chains; see Methods), RDOCK achieves an im-
provement of 5–10% in success rate over ZDOCK(PSC).
The last 20 steps of minimization with full charges further
improve the results drastically, with a 20–25% increase in
success rate at all NP values.

Impact of Rotational Sampling Density

Previously, we carefully investigated the impact of rota-
tional sampling interval (�) in ZDOCK.33,34 We discovered
that ZDOCK achieved higher success rates at larger �
values (such as 15°) for all scoring functions; however, for
some test cases we observed under-sampling.34 In addition
to being more consistent, smaller � (such as 6°) led to
many more hits. The advantage of a finer sampling
becomes evident in RDOCK. Figure 3 compares the two �
values, with or without RDOCK. Even though in general
ZDOCK(PSC) achieves better success rates for � � 15°,
ZDOCK(PSC)�RDOCK performs considerably better for

� � 6o, at all NP � 100, with the largest improvement of
10% seen at NP � 1.

To better understand this phenomenon, we compare the
best-ranked hits at � � 6° before and after RDOCK. For
merely 8 test cases, the best-ranked hit by PSC remains
the best according to RDOCK. In all other test cases,
RDOCK improves the rank of the first hit by promoting
another hit that was somewhat down the list. Therefore,
finer rotational sampling in an initial stage algorithm is
clearly beneficial for the refinement, since more hits are
generated, and there is a better chance that the energy of
at least one of these hits will be substantially minimized
after refinement.

RMSD of the Best Hit

In Table I, we provide the RMSDs of the best-ranked
hits according to three methods. Since no currently avail-
able scoring function can resolve RMSD differences below
0.2 Å, we use this as the cutoff for deeming two predictions
different. If we compare ZDOCK(PSC)�RDOCK with
ZDOCK(PSC), the former picks a lower RMSD structure
as the best ranked hit for 12 test cases and the latter for 5
test cases. If we compare ZDOCK(PSC)�RDOCK with
ZDOCK(PDE), the former picks a lower RMSD hit for 14
test cases and the latter for 4 test cases. Both differences
are significant with a P value of � 0.08 according to the
sign test.37 Thus, we conclude that RDOCK can correctly
rank structures even at the RMSD range of below 2.5 Å.

Score-RMSD Relationship for Individual Test Cases

Since RDOCK is a refinement algorithm, we are natu-
rally interested in knowing if there is a correlation be-
tween energies computed using Equation (1) and the
RMSDs of predicted structures from the crystal complex.
We divide the 42 test cases into five groups according to
RDOCK’s performance, and discuss them in order.

The first group contains 10 test cases, for which
ZDOCK(PSC)�RDOCK reports hits for all top three predic-
tions. Thus, the binding modes of these test cases have
been unambiguously determined by the combination of

Fig. 2. Comparison of the success rates: ZDOCK(PSC) (squares),
ZDOCK(PSC) followed by the first two stages of RDOCK energy minimi-
zation with all ionic side chains kept neutral (circles), and ZDOCK(PSC)
followed by all three stages of RDOCK energy minimization, with ionic
side chains reverted to their full charge states in the last stage of
minimization (triangles).

Fig. 3. The success rates of ZDOCK(PSC) with (solid lines) and
without (dashed lines) RDOCK refinement are compared between two
rotational sampling densities: 6° (triangles and squares) and 15° (circles
and crosses).
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ZDOCK and RDOCK. We plot energy vs. RMSD for these
test cases in Figure 4. The ZDOCK(PSC)�RDOCK graphs
exhibit the classic funnel-like energy landscape: a cluster
of low RMSD structures (hits) dominates the lowest energy
region, and as structures move toward higher RMSD, their
energies increase. For 1PPE, 1STF, 2TEC, and 1SPB, all

three methods produce perfect energy-RMSD graphs. Even
for these test cases, the improvement of RDOCK upon
ZDOCK(PSC) is evident, and ZDOCK(PSC)�RDOCK typi-
cally outperforms ZDOCK(PDE). For 1CHO, ZDOCK(PSC)
also achieves good discrimination. So does ZDOCK(PDE)
for 1DFJ. For the remaining four test cases (2SIC, 1ACB,

Fig. 4. Binding energy (ordinate) vs. RMSD (abscissa) graphs are compared among ZDOCK(PSC)�RDOCK
(left), ZDOCK(PSC) (middle) and ZDOCK(PDE) (right) for the first group of test cases (10 in total). For these
test cases, ZDOCK(PSC)�RDOCK reports hits for all top three predictions. Only predictions with favorable
binding energy (lower than 0) are shown for ZDOCK(PSC)�RDOCK, and only the first 500 predictions are
shown for ZDOCK(PSC) and ZDOCK(PDE), similarly for Figures 5 and 6.
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1BQL, and 2BTF), only ZDOCK(PSC)�RDOCK exhibits
perfect energy-RMSD relationships, representing a drastic
improvement over both ZDOCK(PSC) and ZDOCK(PDE).

There are 8 test cases in the second group (1CSE,
1MAH, 1UGH, 4HTC, 1AHW, 1NMB, 1MEL, and 1ATN),
and for all of them ZDOCK(PSC)�RDOCK ranks a hit as
the number-one prediction. However, a false positive is
ranked within the top three predictions. For 4HTC,
ZDOCK(PSC) retains 54 hits within the top 2,000. Only 2
of the hits survive the vdW cutoff of RDOCK. They are

ranked as the top two predictions by RDOCK. For 1ATN,
ZDOCK(PSC) only retains one hit within the top 2,000,
ranked at 360. After RDOCK refinement, this hit is ranked
number one. For 1CSE, ZDOCK(PSC) only retains 3 hits
within the top 2,000, with the highest rank of 1,537.
RDOCK improves all three hits to the top 10. The situation
is very similar for 1MAH, 1UGH, 1NMB, and 1AHW:
RDOCK improves the ranks of all hits retained by
ZDOCK(PSC) to within the top 100. For 1MEL,
ZDOCK(PSC) provides 52 hits in the top 2,000, and

Figure 4. (Continued.)
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RDOCK increases the number of hits within the top 100
from 6 to 41. The energy-RMSD graphs for these test cases
are included in Figure 5, and ZDOCK(PSC)�RDOCK demon-
strates marked improvement over both ZDOCK(PSC) and
ZDOCK(PDE) for all cases.

The third group includes 11 test cases: 2PTC, 1BRC,
1BRS, 1AVW, 1TAB, 1UDI, 1MLC, 1WEJ, 1FBI, 1QFU,
and 1A0O. There is no doubt about the improvement of
ZDOCK(PSC)�RDOCKoverZDOCK(PSC)andZDOCK(PDE),
both in terms of the number of hits in the top 100 and the
rank of the first hit. For six of these test cases,
ZDOCK(PSC)�RDOCK ranks a hit among the top 4
predictions. We show their energy-RMSD graphs in Figure
6. Most of the ZDOCK(PSC)�RDOCK graphs show good
discrimination, except for a few scattered false positives.
Notably, the graph for 1AVW is perfect except for one false
positive at RMSD of 11Å. For 2PTC, 1MLC, and 1WEJ, the
ranks of the best hits according to PSC are very poor (1655,
1106, and 1396). They are improved to 2, 2, and 4 by
RDOCK, which are also far superior to the ranks according
to ZDOCK(PDE): 193, 128, and 183, respectively.

The fourth group has five test cases (1FSS, 1JHL, 2VIR,
1DQJ, and 1IGC). The improvement made by RDOCK over
ZDOCK(PSC) is evident for these test cases. Nevertheless,
the final results of ZDOCK(PSC)�RDOCK are less impres-
sive than those for the first three groups of test cases. For
example, ZDOCK(PSC) provides 15 hits in the top 2,000,
with the best one ranked at 404. RDOCK brings one hit to
the top 100, with the rank of 41. This is compared with the
rank of 303 according to ZDOCK(PDE).

The last group includes the remaining eight test cases.
RDOCK makes little improvement or worsens the results
somewhat. For none of these test cases, RDOCK worsens

the result significantly. The most severe case is 1NCA. The
rank of the best hit is 1, 2, and 8 for ZDOCK(PSC),
ZDOCK(PDE), and ZDOCK(PSC)�RDOCK respectively.
Moreover, all top three predictions are hits according to
ZDOCK(PDE).

DISCUSSION

We present a simple and effective refinement algorithm,
RDOCK, for protein-protein docking. The main component
of RDOCK is a three-stage energy minimization scheme,
followed by the evaluation of electrostatic and desolvation
energies. We do not perform any explicit side chain or
backbone searches, or refinement of the relative orienta-
tion between the receptor and the ligand. We do not cluster
resulting structures either. Thus, RDOCK represents the
simplest approach toward refining protein-protein docking
predictions. Side chain conformational search has been
shown by several groups to significantly improve protein
docking.14,16,17,38 We expect that it will have a similar
impact on RDOCK. Despite its simplicity, RDOCK makes
substantial improvement upon the top predictions made
by an initial stage rigid-body docking algorithm ZDOCK34

with all three scoring functions: PSC, PD, and PDE. The
improvement is observed across all three categories of test
cases in a large benchmark.35

RDOCK makes the most powerful combination with
ZDOCK2.1, which uses PSC as the scoring function.
Collectively, they rank a hit as the number-one prediction
for 18 test cases (37% of the benchmark), and within the
top 4 predictions for 24 test cases (49% of the benchmark).
To various degrees, funnel-like energy landscapes are
observed for these 24 test cases (Figs. 4–6). To the best of
our knowledge, this is the first report of binding funnels

Figure 4. (Continued.)
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starting from global searches for a broad range of test
cases. These results are particularly exciting, given that
(1) we have not used any biological information that is
specific to individual test cases and the whole process is
entirely automated, and (2) most previous unbound dock-
ing algorithms have been tested on substantially fewer
than 24 unbound cases.5,7,8,11,15–20,22,30

Although the ideal number of predictions per test case is
1, it is possible to use biological information to process 20
predictions generated by an automated method to produce
1–5 predictions for experimental testing. At such a predic-
tion level, ZDOCK(PSC)�RDOCK succeeds for 32 test
cases (65% of the benchmark). Note that RDOCK can only
operate on 42 test cases for which ZDOCK(PSC) produces

Fig. 5. Binding energy (ordinate) vs. RMSD (abscissa) graphs are compared among ZDOCK(PSC)�RDOCK
(left), ZDOCK(PSC) (middle), and ZDOCK(PDE) (right) for the second group of test cases (8 in total).
ZDOCK(PSC)�RDOCK ranks a hit as the number-one prediction for these test cases.
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at least one hit, thus its maximal success rate is 86% for
this benchmark. Among three categories of test cases, best
results are seen for enzyme/inhibitor, with a success rate
of 48% at NP � 1 and 78% at NP � 10. Even though
ZDOCK has the most difficulty with test cases in the
“others” category, the improvement made by RDOCK on
the available test cases is rather impressive: a hit is
ranked as the number-one prediction for 3 test cases, and
ranked at 11, 16, and 21 for the remaining 3 test cases
(Table I).

It is difficult to make direct comparison with previous
refinement methods. Most previous methods assumed
known binding site information, and/or used �10 unbound
test cases.5,7,9,11,14-18,22,38 Others focused on discriminat-
ing against low RMSD false positives.19,20 Also, the defini-
tions of hits vary slightly among methods. We compared
ZDOCK 1.3 with the genetic algorithm by Gardiner et al.10

and our method was slightly better.13 RDOCK is signifi-
cantly better than ZDOCK 2.3, which was shown to be
better than ZDOCK1.3.34 Fernandez-Recio14 et al. at-

Figure 5. (Continued.)
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tempted a comparison with four earlier methods,5,8,12,17

and showed that their method was the best. However, a
direct comparison between our results and those of Fernan-
dez-Recio et al.14 is not straightforward, since they used
known binding site information for the receptors, and the
vast majority of their test cases were enzyme/inhibitor. If
we limit ourselves to this category, our global search
results can be favorably compared with theirs from semi-

global searches: we rank a hit in the top 1 for 48% test
cases and in the top 10 for 78% test cases, and the
corresponding percentages for their method are 35 and
65%, respectively.14

There are two aspects that a refinement algorithm can
improve docking performance: (1) it can refine structures
and improve the binding energies for hits by computing
them more accurately (hopefully to a greater extent than

Fig. 6. Binding energy (ordinate) vs. RMSD (abscissa) graphs are compared among ZDOCK(PSC)�RDOCK
(left), ZDOCK(PSC) (middle), and ZDOCK(PDE) (right) for the third group of test cases (6 in total).
ZDOCK(PSC)�RDOCK ranks a hit among the top 4 predictions for these test cases.
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for false positives), and (2) it can discriminate against false
positives by using energy components that are not present
at the initial stage algorithm. The first point is clearly
supported by our results since we observe a consistent im-
provement by RDOCK over all three sets of ZDOCK predic-
tions for most test cases. The second point deserves more
discussion. It is intriguing that even though ZDOCK(PDE)
substantially outperforms ZDOCK(PSC),34 ZDOCK(PSC)�
RDOCK substantially outperforms ZDOCK(PDE)�RDOCK
(Fig. 1). We believe this is due to the partial overlap between
PDE34 and the scoring function of RDOCK (Equation 1). In
addition to the PSC component, PDE also contains Coulom-
bic electrostatics and ACE-based desolvation, although they
are computed somewhat differently from RDOCK. In order
to save computing time, these two terms in ZDOCK are
grid-based and they are formulated to fit the Fast Fourier
Transform algorithm. Furthermore, the desolvation term
is not pairwise.34 In other words, they are only approxima-
tions of the terms in Equation 1. This explains the
improvement of RDOCK over ZDOCK(PDE) (Fig. 1). Nev-
ertheless, the fact that ZDOCK(PDE) significantly outper-
forms ZDOCK(PSC) indicates that the formulation of PDE
is sufficiently accurate. Therefore, we expect ZDOCK(PSC)
and ZDOCK(PDE) to generate different populations of
false positives: the former would generate false positives
with the best shape complementarity, and the latter with
the highest composite scores containing shape complemen-
tarity, desolvation, and electrostatics energies. RDOCK is
particularly effective in discriminating against PSC false
positives, since most of them do not have favorable desolva-
tion or electrostatics. In comparison, it is less effective
against PDE false positives. This finding raises an impor-
tant issue for the development of refinement methods: a

successful refinement algorithm should try to cover energy
terms that are not contained in the initial stage method.
We believe that the development of such orthogonal en-
ergy functions should be a promising future direction.

A key component of RDOCK is the way we treat ionic
side chains: they are kept neutral throughout the first two
stages of energy minimization, and only reverted to full
charge for the last stage of brief minimization (20 steps).
Moreover, a distance dependent dielectric constant of 4r
was used throughout. Although Coulombic electrostatics
with a distance-dependent dielectric constant is commonly
used in docking algorithms, none of the above-cited work
neutralizes ionic side chains. In another work by Gatchell
et al.39 on the topic of protein folding, a refinement method
was developed to discriminate near-native protein struc-
tures from misfolded models in several decoy sets, and
neutralized side chains were shown to be essential for the
discrimination. Interestingly, a similar procedure was not
used in two other reports on docking refinement.19,20

Lazaridis and Karplus,40,41 developers of the CHARMM
force field, also reported that fully charged side chains
could not distinguish near-native protein structures from
misfolded ones. Note that the CHARMM force field has
been developed with molecular dynamics as the primary
application. Without explicit solvent molecules, oppositely
charged side chains become very close to each other after
energy minimization. This corresponds to extremely favor-
able electrostatics energies in vacuum, which outweigh all
other energy terms. Lazaridis and Karplus recommended
using neutralized ionic side chains in combination with a
distance dependent dielectric constant.40,41 This is sup-
ported by our results. However, we are the first group to
show that reverting to full charges after minimization

Figure 6. (Continued.)
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significantly improves results (Fig. 2). We conclude that
the full charge state is, in fact, more accurate than the
neutral state for ionic side chains. However, they must not
be used during energy minimization, since this could lead
to inaccurate structures and thus inaccurate energies.

Another factor that contributes to RDOCK’s good perfor-
mance is its favorable starting point. ZDOCK retains
many hits within the top 2,000 structures, which are
supplied to RDOCK. Camacho et al.19 commented that
they had difficulty in obtaining sufficient hits in the top
10,000 structures from rigid-body docking algorithms to
test their refinement algorithm. This is clearly not a
concern with ZDOCK. We have also observed that having
more hits (the 6° vs. 15° rotational sampling in ZDOCK)
benefits RDOCK (Fig. 3).

In summary, we have presented a simple refinement
algorithm RDOCK for unbound protein docking. It signifi-
cantly improves over our initial-stage docking algorithm
ZDOCK, and is highly competitive when compared with
previous docking algorithms. The next obvious steps for
improving RDOCK are incorporating side chain conforma-
tional search and developing orthogonal energy compo-
nents.
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