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ABSTRACT The development of scoring func-
tions is of great importance to protein docking. Here
we present a new scoring function for the initial
stage of unbound docking. It combines our recently
developed pairwise shape complementarity with
desolvation and electrostatics. We compare this scor-
ing function with three other functions on a large
benchmark of 49 nonredundant test cases and show
its superior performance, especially for the antibody-
antigen category of test cases. For 44 test cases (90%
of the benchmark), we can retain at least one near-
native structure within the top 2000 predictions at
the 6° rotational sampling density, with an average
of 52 near-native structures per test case. The re-
maining five difficult test cases can be explained by
a combination of poor binding affinity, large back-
bone conformational changes, and our algorithm’s
strong tendency for identifying large concave bind-
ing pockets. All four scoring functions have been
integrated into our Fast Fourier Transform based
docking algorithm ZDOCK, which is freely available
to academic users at http://zlab.bu.edu/�rong/dock.
Proteins 2003;52:80–87. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

Protein docking is the prediction of the three-dimen-
sional (3D) structure of a protein–protein complex from
the coordinates of its component structures. It is classified
as bound docking or unbound docking. For the former, a
protein complex is pulled apart and reassembled. For the
latter, individually crystallized component structures are
used. Unbound docking is of more interest to us and is the
focus of this work. It has long been recognized that
proteins undergo conformational changes on binding, espe-
cially their surface side-chains. This complicates unbound
docking tremendously. With current computing power, it
is not feasible to perform extensive conformational searches
during docking, unless the binding site is known. Thus, a
number of groups have adopted the two-stage approach1,2:
in the initial stage, the receptor and ligand are treated as
rigid bodies and the 6D rotational and translational de-
grees of freedom are fully explored with scoring functions
that are tolerant to conformational changes3–10; in the
refinement stage, a small number (tens to thousands) of
structures obtained in the initial stage is refined and

reranked by using more detailed energy functions that
take into account conformational changes.11–15 Fre-
quently, conformational searches using side-chain rotam-
ers and energy minimizations are performed in the refine-
ment stage.

In this manuscript, we focus on the initial stage of
unbound docking. A number of algorithms have been
developed for this goal and described in several re-
views.1,2,16–20 FTDock searches the grid-based shape
complementarity (GSC) and electrostatics using a Fast
Fourier Transform (FFT) algorithm.3 DOT is another
FFT-based method that computes Poisson–Boltzmann elec-
trostatics.4 HEX evaluates overlapping surface skins and
electrostatic complementarity with Fourier correlation.5

GRAMM focuses on low-resolution docking, evaluating
GSC with FFT.6 PPD matches critical points by using
geometric hashing.7 BiGGER searches maximal surface
mapping and favorable amino acid contacts by using a
bit-mapping method.8 DARWIN9 calculates molecular me-
chanics energies defined according to CHARMM21 by
using a genetic algorithm.

We have developed an initial-stage docking algorithm
called ZDOCK,10 which optimizes desolvation, GSC, and
electrostatics by using FFT. A layer of grid points that
surround the receptor is identified, and the total number of
grid points in this layer that overlap any grid points
corresponding to ligand atoms, minus a clash penalty, is
the GSC score. We showed that the desolvation component
of our scoring function was the key to ZDOCK’s competi-
tive performance, compared with several other algorithms
with a similar goal.10 Subsequently, we discovered a novel
pairwise shape complementarity function (PSC), which
computes the total number of receptor-ligand atom pairs
within a distance cutoff, minus a clash penalty. When
tested on a benchmark with 49 nonredundant test cases,22

PSC consistently identified more near-native structures
and ranked them higher than GSC, and this superior
performance was observed across all classes of complexes
and at all prediction levels.23

In this manuscript, we integrate PSC with desolvation
(DE) and electrostatics (ELEC) to create a much more
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powerful scoring function PSC�DE�ELEC. The resulting
scoring function is tested on the same benchmark22 and
proves superior to PSC alone23 and the GSC�DE�ELEC
scoring function in our previous study.10 For 44 test cases
(90% of the benchmark), ZDOCK with PSC�DE�ELEC
can retain at least one near-native prediction (also called a
hit) within the top 2000 predictions at a rotational sam-
pling interval of 6°, with an average of 52 hits per test case.
The improvement of PSC�DE�ELEC over GSC�DE�
ELEC is most apparent in the antibody-antigen category
of test cases, with the former producing more hits and
better rankings for hits on practically all test cases. We
also carefully examine the five test cases that ZDOCK has
difficulty with and discuss the potential applications of
different scoring functions for the initial stage of unbound
docking.

SCORING FUNCTIONS

The basic search algorithm of ZDOCK has been de-
scribed in detail.10 In this manuscript, we focus on the
comparison of different scoring functions. Our goal is to
identify the scoring function that performs best for the
initial stage of unbound docking, which entails ranking as
many near-native structures as possible in the top few
thousand predictions. We consider four scoring functions:
combining grid-based shape complementarity GSC with
desolvation and electrostatics (GSC�DE�ELEC), pair-
wise shape complementarity (PSC), combining PSC with
desolvation (PSC�DE), and combining PSC with desolva-
tion and electrostatics (PSC�DE�ELEC). Two of these
target functions have been described previously: GSC�
DE�ELEC10 and PSC.23 The remaining two, PSC�DE
and PSC�DE�ELEC, are described as follows.

PSC�DE

We use the atomic contact energy (ACE)24 to estimate
desolvation (DE). ACE is defined as the free energy change
of breaking two protein atom-water contacts and forming a
protein atom–protein atom contact and a water–water
contact. ACE scores were derived from the observed pro-
tein atom–protein atom contacts in 90 high-resolution
crystal structures for all pairs of 18 atom types. The total
desolvation score of a complex is simply the sum of the
ACE scores of all receptor-ligand atom pairs within a
distance cutoff of 6 Å. To improve the computational speed
using an FFT-based search algorithm, we use 18 nonpair-
wise ACE scores (the ei scores in Table 3 of Ref. 24),
representing the score between one protein atom of a
specific type and another protein atom of an “averaged”
type. Previously we combined this desolvation term with
the GSC function and showed a drastic improvement on
docking performance.10

PSC is composed of a favorable term and a penalty term.
The favorable term calculates the total number of atom
pairs between the receptor and the ligand within a dis-
tance cutoff (D plus the receptor atom radius). It is similar
to the above ACE-based desolvation energy, except that
ACE assigns score eij to a pair of atoms of types i and j, and
PSC assigns all atom pairs the same score regardless their

types.23 The penalty term of PSC prevents clashes by
assigning �81, �27, and �9 to every core–core, surface–
core, and surface–surface grid point overlap, respectively.

The easiest way of combining PSC with ACE would be
simply summing these two terms. However, positive PSC
scores indicate good shape complementarity, with each
atom pair receiving the score of 1, whereas ACE scores can
be positive (unfavorable) or negative (favorable), ranging
between 1.334 and �1.827. To make these two scores
compatible, we flip the signs of the PSC scores. To keep the
penalty term of PSC unaltered, we need to make the
“favorable” component of the PSC�DE scoring function
equal to or smaller than 0. Therefore, we decrease the PSC
score for each atom pair from �1 to �1.334, to counter the
most unfavorable ACE score. Then the two terms are
summed. Thus, a more negative score indicates a more
favorable interaction energy.

To compute PSC�DE efficiently with FFT, four discrete
functions on an N � N � N grid, RPSC, LPSC, RDE, and LDE,
are used to describe the shape and desolvation properties
of the receptor and ligand, and the PSC�DE scoring
function SPCS�DE is expressed as correlations of these four
functions:

RPSC � LPSC

� �3 solvent excluding surface layer of the protein
32 protein core
0 open space

(1)

Re[RDE] � Re[LDE]

� �sum of PSC and ACE scores of all open space
nearby atoms

0 otherwise

Im[RDE] � Im[LDE]

� �1 if this grid point is the nearest
grid point of an atom

0 otherwise

SPSC � DE � Re[RPSC � LPSC] �
1
2 � Im[RDE � LDE]

where RPSC and LPSC are real functions, and RDE and LDE

are complex functions. Re[ ] and Im[ ] denote the real and
imaginary parts of a complex function. If a protein atom
has �1 Å2 solvent-accessible area, calculated by using a
water probe radius of 1.4 Å,25 it is considered a surface
atom. Otherwise, it is a core atom. The “solvent excluding
surface layer of the protein” is defined by the grid points
corresponding to surface atoms. All other grid points
corresponding to core atoms are in the “protein core.”
“Nearby atoms” are atoms within the distance cutoff (D
plus the receptor atom radius) of a grid point. Im[RDE �
LDE] is divided by 2 because each atom pair has been
counted twice.

PSC�DE�ELEC

Similar to our previous work,10 we compute the electro-
statics energy by using the Coulombic formula, which is
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expressed as a function of the electrical potential gener-
ated by the receptor and the partial charges of ligand
atoms. We multiply the resulting electrostatics energy
with a scaling factor � and add it to the PSC and DE scores.
In practice, this sum can be directly evaluated by using the
FFT search algorithm. Two new discrete functions are
involved: RPSC�ELEC and LPSC�ELEC, in addition to RDE

and LDE defined in Eq. 1.

Re[RPSC � ELEC] � Re[LPSC � ELEC]

� � 3.5 solvent excluding surface layer of the protein
3.52 protein core

0 open space

(2)

Im[RPSC � ELEC]

� �� � (electric potential of all open space
receptor atoms)

0 otherwise

Im[LPSC � ELEC]

� � � 1 � (atom charge) if this grid point is the nearest
grid point of a ligand atom

0 otherwise

SPSC � DE � ELEC � Re[RPSC � ELEC � LPSC � ELEC]

�
1
2 � Im[RDE � LDE]

In the above equation, the penalty component of PSC
and ELEC have been assigned to the real and imaginary
parts of RPSC�ELEC, respectively. Thus, PSC�DE�ELEC
has the same computational complexity as PSC�DE. The
PSC penalty is increased slightly to balance the increased
favorable contribution by electrostatics. � is defaulted to 3,
with no major impact on the performance when varied by
50–200%. The default �-value does not indicate that the
electrostatics energy contributes three times as much as
PSC and DE do to the final scoring function. In the original
ACE publication, all ACE scores were multiplied by 1/21 to
transform dimensionless contact energies into the kcal/
mol unit.24 Thus, the electrostatics energy contributes
�/21 � 1/7 as much as PSC and DE. This is consistent with
the noisy nature of the Coulombic electrostatics. In fact,
FTDock could only use electrostatics as a filter, and the
authors indicated that it was too noisy to be a direct
component of their scoring function.3

Performance Evaluation

We used version 0.0 of a benchmark developed in our
laboratory,22 which contained 23 enzyme-inhibitor, 16
antibody-antigen, and 10 other types of test cases. For
antibodies, we restricted the search to complementarity
determining regions, defined by using only sequence infor-
mation.10 For all other proteins, we assumed no binding
site information and performed a full search. The perfor-
mance of different scoring functions is evaluated by using
success rate and hit count, as defined previously.23 Given

the number of predictions being evaluated for each test
case (NP), success rate is the percentage of test cases in the
benchmark, for which at least one near-native structure
(hits) has been found, and hit count is the average number
of hits per test case ranked within NP. Hits are predictions
with root-mean-square deviation (RMSD) below 2.5 Å
after superposition. Superposition and RMSD calculation
only involve the C� atoms of interface residues, which are
receptor (or ligand) residues with at least one atom within
10 Å of any atoms of the ligand (or receptor).

Computational Implementation

ZDOCK is written in C and parallelized by using mes-
sage-passing interface. We have assigned different version
numbers to the various scoring functions compared in this
manuscript: ZDOCK1.3 for GSC�DE�ELEC,10 ZDOCK2.1
for PSC,23 ZDOCK2.2 for PSC�DE (this work), and
ZDOCK2.3 for PSC�DE�ELEC (this work). The average
computing time for ZDOCK2.2 or ZDOCK2.3 per complex
on a 16 processor IBM-SP4 is 4 min. The program is freely
available to academic researchers at http://zlab.bu.edu/
�rong/dock.

RESULTS
Performance Averaged Over the Entire Benchmark

For each test case, we obtain the number of hits ranked
above some number of predictions being evaluated and the
rank of the best ranked hit. Table I contains the results for
all four scoring functions at a 6° rotational sampling
interval (	 � 6°), corresponding to 54,000 rotations. The
GSC�DE�ELEC results are not directly comparable with
those in our previous manuscript,10 because we have made
three modifications: (i) Previously, we rotated the ligand
molecule evenly around the x, y, and z axes; now we use a
set of Euler angles corresponding to a uniformly distrib-
uted set of points on a projective sphere. (ii) We used to
keep the top 10 translational orientations per rotation;
now we only keep one because we have discovered that the
top 10 translations are usually extremely similar, and
keeping only the best one helps to remove false positives
without affecting the ranking of the first hit. (iii) Now we
randomly perturb all starting receptor and ligand orienta-
tions to avoid deliberately sampling a near-native orienta-
tion. The calculation of PSC is the same as before, except
that we previously reported the results for 	 � 15°,23 and
now we present the results for 	 � 6° in Table I.

The average performance over the entire benchmark is
best illustrated by using success rate and hit count versus
number of predictions graphs (Fig. 1). Here the data
correspond to 	 � 15°. Success rate reflects the average
ability of a scoring function for ranking a hit within some
number of predictions being evaluated (NP). For example,
at NP � 5, the success rate is 31% (or 15 test cases) for
PSC�DE�ELEC, indicating that this scoring function
ranks one or more hits in the top 5 for 15 test cases. Figure
1(a) indicates that at most NP values, PSC�DE�ELEC
performs better than PSC�DE, which outperforms PSC.
Compared to the PSC family of scoring functions,
GSC�DE�ELEC performs the best at NP � 1; it becomes

82 R. CHEN AND Z. WENG



TABLE I. Docking Performance With 6° Rotational Sampling Interval†

Test
casea

GSC�DE�ELEC PSC PSC�DE PSC�DE�ELEC

Hitsb Rankc Hitsb Rankc Hitsb Rankc Hitsb Rankc RMSDd

1CGI 77 3 54 4 77 7 77 4 2.41
1CHO 93 22 66 1 82 1 99 3 1.57
2PTC 62 65 2 1655 20 434 48 193 1.83
1TGS 86 5 107 3 145 1 109 3 2.22
2SNI 60 169 0 7434 1 1544 1 1262 2.22
2SIC 115 2 24 241 53 46 52 11 2.37
1CSE 87 3 3 1537 14 429 29 198 2.20
2KAI 1 1772 3 1399 19 339 16 388 1.61
1BRC 24 52 16 173 42 109 54 24 2.32
1ACB 199 3 38 25 79 12 93 18 1.33
1BRS 3 1019 34 61 28 67 21 65 2.13
1JTG 72 1 69 3 76 3 82 1 1.52
1MAH 58 9 6 849 23 97 28 24 1.29
1UGH 58 14 4 305 28 6 20 8 2.25
1DFJ 43 2 15 37 11 6 51 1 2.48
1FSS 2 1066 5 731 11 204 15 50 1.52
1AVW 2 704 28 45 29 12 52 3 2.07
1PPE* 318 1 272 1 364 1 393 1 0.90
1TAB* 0 10783 47 65 8 565 50 79 1.21
1UDI* 41 198 16 31 34 2 35 5 1.19
1STF* 152 1 42 1 87 1 83 1 0.88
2TEC* 226 1 77 1 180 1 185 1 0.76
4HTC* 73 2 54 1 62 3 57 3 2.46

1MLC 16 134 3 1106 7 433 17 128 1.65
1WEJ 1 1940 4 1396 0 2597 22 183 1.04
1AHW 64 11 28 26 27 76 67 7 1.82
1DQJ 0 46002 1 1341 0 6055 0 9249 2.37
1BVK 0 40864 2 974 4 496 2 821 2.34
1FBI* 3 561 2 1786 1 1827 5 642 2.03
2JEL* 0 4296 62 112 42 91 35 233 1.46
1BQL* 114 4 16 172 33 127 70 13 1.07
1JHL* 0 4259 15 404 0 2275 12 333 1.37
1NCA* 9 211 55 2 56 1 67 1 1.06
1NMB* 3 1108 6 693 3 1473 9 135 0.98
1MEL* 32 9 52 12 108 4 71 3 1.19
2VIR* 0 3003 3 476 1 1896 3 1101 1.03
1EO8* 0 8420 0 4366 0 5801 2 1497 0.96
1QFU* 4 606 10 407 12 307 18 388 1.14
1IAI* 3 905 0 2525 2 1151 3 997 1.70

2PCC 6 702 0 — 0 — 0 22338 2.49
1WQ1 10 131 26 5 24 28 54 15 1.31
1AVZ 0 39047 0 — 0 — 0 53466 1.61
1MDA 0 16183 0 33988 0 32051 0 18034 2.29
1IGC* 0 5088 6 22 15 38 3 153 1.20
1ATN* 47 13 1 360 9 118 24 7 0.80
1GLA* 19 214 0 — 0 28601 0 9794 1.55
1SPB* 106 1 75 1 103 1 112 1 0.61
2BTF* 17 27 13 32 6 166 35 2 0.95
1A0O* 9 619 2 833 0 7889 4 284 2.45
†For bolded test cases, PSC�DE�ELEC ranked at least one hit within the top 20 predictions.
aFour-letter Protein Data Bank (PDB) code for the crystal complex of a test case.
bNumber of hits in the top 2000 predictions. Hits are defined as docked structures with interface RMSD � 2.5 Å from the crystal complex; see
Performane Evaluation for more details.
cRank of the best ranked hit. — indicates that no hit was found in the first 54,000 predictions.
dRMSD for the best ranked hit. — indicates that no hit was found in the first 54,000 predictions.
*Unbound-bound complexes.
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worse than PSC�DE�ELEC for NP � 1 and also worse
than PSC�DE for NP � 10, and even worse than PSC for
NP � 200. At a rotational sampling density of 6° (graph not
shown), the above description remains largely valid except
that GSC�DE�ELEC is the worst performer for NP � 1.
Moreover, PSC�DE�ELEC is clearly the best, with a
success rate higher than those of all other scoring func-
tions by 13% (or six complexes) at NP � 1000.

Hit count indicates the average number of hits a target
function can retain within some number of predictions
being evaluated [Fig. 1(b)]. For example, at NP � 5, the hit
count for PSC�DE�ELEC is 0.4, meaning that this target
function retains on average 0.4 hits per test case. Figure
1(b) indicates that adding DE to PSC leads to more hits
over all NP values, and adding ELEC leads to even more
hits. If 1000 predictions are evaluated for each test case,
the hit count is 5.2, 6.7, and 7.3 for PSC, PSC�DE, and
PSC�DE�ELEC, respectively. GSC�DE�ELEC has com-
parable hit count to PSC�DE�ELEC at NP 
 100. For
NP � 100, it has lower hit count than PSC�DE�ELEC but
higher than or comparable to PSC�DE. At 	 � 6°, the
relative performance of the PSC family of scoring functions
remains similar to the above description (graph not shown).

GSC�DE�ELEC and PSC�DE�ELEC have comparable
hit counts throughout the entire range of NP.

Previously, we reported that on average, denser rota-
tional sampling leads to worse success rate but much
higher hit count for PSC.23 This is also true for other
scoring functions. For some test cases (such as 10 of 49 test
cases in the case of PSC�DE�ELEC), finer sampling can
produce better rankings for the best ranked hits, simply
because these hits were missed at coarser sampling.
However, for many test cases, because the highest ranked
prediction is not a hit, finer sampling tends to extend the
list of false positives and thus lead to a worse rank for the
best ranked hit. Because our goal here is to achieve the
best performance in the initial stage of protein docking, it
is important for a scoring function to retain at least one hit
in a reasonably small NP for most test cases. Most postpro-
cessing methods can comfortably handle 1000–2000 predic-
tions. Our experience on postprocessing indicates that it is
best to compare scoring functions for the top 1000 predic-
tions at 	 � 15°, and for 2000 predictions at 	 � 6°.
Therefore, in Table I we have included the number of hits
each scoring function can retain within the top 2000
predictions.

Similar to other docking algorithms, ZDOCK performs
best on the enzyme-inhibitor category of test cases, com-
pared with antibody-antigen and others. This applies to all
four scoring functions discussed here. Nonetheless, the
improvement of PSC�DE over PSC, as well as the improve-
ment of PSC�DE�ELEC over both PSC�DE and PSC, is
consistently observed across all three categories of test
cases. It is of interest that the improvement of PSC�
DE�ELEC over GSC�DE�ELEC differs among three
categories of test cases. For the rest of the Results section,
we focus on the comparison of these two scoring functions
category by category. In Figure 2, we plot success rate and
hit count in each category of test cases, for both 6° and 15°
rotational sampling intervals.

Antibody-Antigen

The superior performance of PSC�DE�ELEC over
GSC�DE�ELEC in Figure 1 can be largely attributed to
the antibody-antigen category of test cases. Figure 2(a)
indicates that at 	 � 15°, PSC�DE�ELEC has drastically
higher success rates than GSC�DE�ELEC for all NP

values except NP � 1. The exception is due to 1AHW, for
which GSC�DE�ELEC ranks a hit as the number 1
prediction, whereas PSC�DE�ELEC only ranks a hit at
10 for this test case. It is of interest that the relative
performance for these two scoring functions on 1AHW is
quite different at 	 � 6° (Table I): the highest rank for a hit
is only 11 for GSC�DE�ELEC, and PSC�DE�ELEC
ranks a hit at 7, indicating that its poorer performance at
	 � 15° was due to undersampling. At 	 � 6°,
PSC�DE�ELEC has higher success rates for all NP

values [Fig. 2(a)]. Figure 2(b) indicates that at either
sampling density, PSC�DE�ELEC produces approxi-
mately twice as many hits as GSC�DE�ELEC, across the
entire NP range.

Fig. 1. The performance of PSC�DE�ELEC (� and solid orange
line), PSC�DE (■and solid cyan line), PSC (● and dash black line), and
GSC�D�ELEC (Œ and solid red line) are compared according to success
rate (a) and hit count (b). The rotational sampling interval used here is 15°.
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A case-by-case comparison indicates that PSC�
DE�ELEC beats GSC�DE�ELEC on almost all test
cases, both in the ranking of the first hit and in the
number of hits retained (Table I). Impressively, except
for one test case (1DQJ, with 1415 and 9249 being the
best rank for a hit at 	 � 15° and 6° respectively),

PSC�DE�ELEC is able to produce at least one hit
within some reasonable number of predictions (we use
NP � 1000 at 	 � 15° and NP � 2000 at 	 � 6°) for all
other 15 antibody-antigen test cases. This represents a
significant improvement over previous first-stage un-
bound docking algorithms, which either examined very

Fig. 2. The performance of PSC�DE�ELEC (� and solid orange line for 15°; ■ and dash blue line for 6°), and GSC�DE�ELEC (Œ and solid red
line for 15°; ● and dash black line for 6°) are compared within 16 antibody-antigen test cases (a and b), 23 enzyme-inhibitor test cases (c and d), and 10
test cases in the others category (e and f). The comparison is based on success rate for (a), (c), and (e) and based on hit count for (b), (d), and (f).
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few antibody-antigen, or reported much worse perfor-
mance on this class of test cases.

Enzyme-Inhibitor

In Figure 2(c), we show that PSC�DE�ELEC consis-
tently achieves higher success rates than GSC�DE�ELEC
at both rotational sampling densities. The only exception
is that at 	 � 15°, GSC�DE�ELEC ranks a hit as the
number 1 prediction for nine test cases, whereas
PSC�DE�ELEC only succeeds in doing so for seven test
cases. Figure 2(d) indicates GSC�DE�ELEC on average
produces more hits than PSC�DE�ELEC, especially at
	 � 6°. On close examination of individual test cases in
Table I, we discover that the elevated hit count for
GSC�DE�ELEC is due to its ability to retain many hits
for six test cases (2SNI, 2SIC, 1ACB, 1MAH, 1UGH, and
1STF). PSC�DE�ELEC also performs very well for the
last five test cases, with over a dozen hits within the top
1000 predictions for each test case. 2SNI seems to be the
only enzyme-inhibitor test case, with which the PSC
family of scoring functions has some difficulty. In contrast,
at 	 � 6°, GSC�DE�ELEC struggles with four test cases
(2KAI, 1BRS, 1FSS, and 1TAB). Especially for 1TAB,
GSC�DE�ELEC is not able to retain a hit within the top
1000 predictions at 	 � 15°, nor within the top 2000
predictions at 	 � 6°.

Others

Figure 2(e) indicates that PSC�DE�ELEC prevails in
the low NP range, whereas GSC�DE�ELEC takes over at
larger NP. Figure 2(f) indicates PSC�DE�ELEC produces
many more hits than GSC�DE�ELEC at 	 � 6°, whereas
they perform comparably at 	 � 15°. Because test cases in
this category are diverse, close examination of individual
ones is important. All scoring functions have failed on
1AVZ and 1MDA. In addition, GSC�DE�ELEC fails on
1IGC. PSC�DE�ELEC cannot find any hits for this test
case at 	 � 15° because of undersampling. The particular
random starting orientation happens to produce poor
results. We have rerun the program at 	 � 15° with 10
random starting orientations and obtained at least one hit
in the top 1000 predictions for 8 runs. At 	 � 6°,
PSC�DE�ELEC successfully retains three hits in the top
2000 for 1IGC, with the best rank being 153. However,
PSC�DE�ELEC fails on two other test cases (2PCC and
1GLA), for which GSC�DE�ELEC performs well for both
	 values. For the remaining five test cases (1WQ1, 1ATN,
1SPB, 2BTF, and 1A0O), PSC�DE�ELEC consistently
performs better than GSC�DE�ELEC, indicated by a
better rank for the first hit and/or more hits.
PSC�DE�ELEC generates a large number of hits for
1WQ1 at 	 � 6°, which accounts for its high hit count in
Figure 2(f).

DISCUSSION

We have developed a new scoring function PSC�DE�
ELEC for the initial stage of unbound docking. It combines
our recently developed shape complementarity scoring
function PSC23 with desolvation and electrostatics. We

compared PSC�DE�ELEC with three other scoring func-
tions—PSC, PSC�DE, and GSC�DE�ELEC—on a large
benchmark of test cases. We have implemented all of these
scoring functions in our FFT-based docking algorithm
ZDOCK. Our results show that with PSC�DE� ELEC we
are getting close to solving the initial stage of the unbound
docking problem. Of 49 test cases, only 3 proved difficult
for all scoring functions (1DQJ, 1AVZ, and 1MDA). The
best scoring function PSC�DE�ELEC failed on two more
test cases (2PCC and 1GLA). Therefore, for 90% test cases,
ZDOCK with PSC�DE�ELEC can retain at least one hit
within the top 2000 predictions at 	 � 6°, with an average
of 52 hits per test case.

The three most difficult test cases are as follows: Hy-
hel-63 Fab/Lysozyme (1DQJ), HIV-1 NEF/FYN tyrosine
kinase SH3 domain (1AVZ), and Methylamine dehydroge-
nase/Amicyanin (1MDA). The other two test cases that
PSC�DE�ELEC had difficulty with were Cytochrome C
Peroxidase/Iso-1-Cytochrome C (2PCC) and Glycerol ki-
nase/GSF III (1GLA). The first possible explanation is that
these are low-affinity complexes. Indeed, the binding free
energy is �11.5 kcal/mol for 1DQJ,26 �10.4 kcal/mol for
1AVZ,27 �7.2 kcal/mol for 1MDA,28 �10.0 kcal/mol for
2PCC,29 and �7.1 kcal/mol for 1GLA,30 respectively. These
are all within the weaker half of the affinity range in the
benchmark.

Poor bound docking results on a test case can suggest
explanations for the poor performance of unbound docking
on the same test case. By applying PSC�DE�ELEC with
default parameters for unbound docking to the bound
components of the crystal complexes in all 49 test cases we
were able to rank a hit as the number 1 prediction for 29
test cases, and at least one hit in the top 10 for 11
additional test cases. However, the best rank of a hit for
1MDA was 1377, much worse than all other test cases.
2PCC had the second worst rank at 658. Both 1MDA and
2PCC are electron transfer complexes. Close inspection of
the crystal complexes reveals many cavities at the inter-
face, perhaps important for the electron transfer function.
Therefore, we conclude that the poor performance for
1MDA and 2PCC is due to their weak binding affinities.

The second possible explanation is conformational flex-
ibility, especially for the test cases that bound docking
performs well on. Bound docking on 1DQJ and 1AVZ
produces the best ranked hits as the number 1 and 6
predictions, respectively. Therefore, these two test cases
are not inherently difficult. Close inspection reveals signifi-
cant backbone conformational changes for both of these
two test cases: the RMSD between the bound and unbound
conformations of residues 99–103 of lysozyme in 1DQJ is
3.35 Å. After replacing these residues in the unbound
structure with their bound conformations, PSC�
DE�ELEC is able to identify one hit ranked at 742. The
N-terminal tail of Nef in 1AVZ, which forms part of the
binding site for the Fyn SH3 domain, is highly flexible in
the unbound state (residues 71–73 disordered and resi-
dues 74–78 with RMSD of 1.78 Å compared to the bound
structure). After replacing these residues with their bound
conformations, PSC�DE�ELEC was able to identify a hit
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ranked at 1667. Both of the above two calculations were
performed at 	 � 6°.

The poor performance on 1GLA is a bit puzzling. Unlike
the four test cases described above, 1GLA is an unbound-
bound test case. Bound docking had a rank for the first hit at
181, somewhat poor. Its weak binding free energy (�7.1
kcal/mol) could take the blame. We have noticed that PSC is
particularly capable of identifying large concave binding
pockets.23 Visual inspection indicates that numerous top
ranked false positives form clusters at three large concave
pockets of the glycerol kinase, with one of them being its deep
funnel-like active site; unfortunately, none of these is the
binding site for GSF-III. Therefore, two reasons could ac-
count for 1GLA: poor binding affinity and the high tendency
of PSC�DE�ELEC in docking molecules into large pockets.

Ultimately, ZDOCK must be combined with a refine-
ment method. If the refinement method can handle 2000
predictions per test case, we recommend using the top
2000 predictions generated at 	 � 6°, because we observe
undersample at 	 � 15° for some test cases. The number of
hits that each scoring function can retain within the top
2000 predictions at 	 � 6° is 44 for PSC�DE�ELEC, 42
for PSC, 40 for PSC�DE, and 39 for GSC�DE�ELEC,
respectively (Table I). The difference can be almost com-
pletely explained by the performance on the antibody-
antigen category of test cases. Even though PSC�DE�
ELEC is the best, the other three scoring functions are not
too far behind at NP � 2000. Because the performance of a
refinement method can be heavily influenced by the type of
false positives produced by ZDOCK and the scoring func-
tions discussed here generate different types of false
positives, it is likely that a refinement method works best
with PSC and not with PSC�DE�ELEC. Therefore, we
have made all four scoring functions available as different
versions of ZDOCK. The top predictions for all test cases in
the benchmark are also available at http://zlab.bu.edu/
�rong/dock, and they should be helpful for the develop-
ment of refinement methods.
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