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INTRODUCTION

Protein function is usually described in terms of interactions with other proteins

and thus ability to describe, model, predict, and design protein interactions is im-

portant for both theoretical and applied proteomics. The current state of the art in

prediction of complex structures was recently described in comprehensive reviews

by Smith and Sternberg1 and Halperin et al.2 Both identified three key ingredients:

(1) representation of the system, (2) global conformational space search, and (3)

reranking of top solutions based on a scoring function. Halperin et al. notes that

these steps are similar to the traditional approach to protein folding. Indeed they

are typical of many approaches to problems in computational biology. In this work,

we have chosen the popular fast-fourier transform (FFT) approach to docking and

focused on optimizing the protein representation to attain an efficient way of incor-

porating accurate scoring functions into the search procedure.

Use of FFT correlation for protein docking, first proposed by Katchalski-Katzir

et al.,3 requires mapping the atoms of both molecules onto a 3D grid and assigning

values to the grid cells, which, in the process of computation, evaluate to various

components of the docking scoring function. It has been successfully shown that this

approach can rather naturally evaluate shape complementarity and electrostatics ener-

gies.4–6 Essentially, this is possible because these energy calculations can be broken

down into two components, each placed as a value on one of the two docked mole-

cules, allowing them to evaluate to the final score in the context of an FFT correlation

computation. When it comes to implementing a pair-wise calculation, such as a statis-

tical potential score, the identities of the grid cells (or protein atoms) become impor-

tant. This means that in order to use the FFT correlation method to evaluate the sta-

tistical potential score using a 20 3 20 amino acid interaction preference table, we

would need to construct individual FFT grids for each amino acid (or atom type). In

the past, our ZDOCK program used an averaged version of statistical potentials, com-

pressing the 18 3 18 atomic contact energies (ACE) table down to an 18-long vector

and using that as an approximation of the pair potential ACE score.7 Here, we show

that despite the high reported correlation between pair-wise and averaged potential

scores, there is a significant amount of information lost through this approximation.

Taking advantage of the fact that the FFT evaluates both real and imaginary parts

of a complex function, it is possible to compute the pair-wise potential score of two

amino acids or atom types with each FFT correlation. Nevertheless, the computa-

tional cost of 10 FFT correlations for the 20 amino acid alphabet or 9 FFT correla-
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ABSTRACT

The biophysical study of protein–

protein interactions and docking

has important implications in our

understanding of most complex

cellular signaling processes. Most

computational approaches to pro-

tein docking involve a tradeoff

between the level of detail incor-

porated into the model and com-

putational power required to

properly handle that level of

detail. In this work, we seek to

optimize that balance by showing

that we can reduce the complexity

of model representation and thus

make the computation tractable

with minimal loss of predictive

performance. We also introduce a

pair-wise statistical potential suit-

able for docking that builds on

previous work and show that this

potential can be incorporated into

our fast fourier transform-based

docking algorithm ZDOCK. We

use the Protein Docking Bench-

mark to illustrate the improved

performance of this potential

compared with less detailed other

scoring functions. Furthermore,

we show that the new potential

performs well on antibody-anti-

gen complexes, with most pre-

dictions clustering around the

Complementarity Determining

Regions of antibodies without any

manual intervention.
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tions for 18 ACE atom types remains prohibitive. Using

the results of our recent work on derivation of optimized

atom types from protein interfaces for any alphabet size,

we found that we can decrease the number of atom types

needed to represent protein structures without any loss

of accuracy in the pair-wise score evaluation.

Furthermore, we built upon previous work by Moont

et al.6 to derive a ‘‘surface fraction’’ pair potential, which

evaluates the interaction preferences of protein surface atoms

based on a curated set of transient protein interfaces.8

The final results show a significant improvement in

performance of ZDOCK on a nonredundant benchmark

of 63 protein docking cases, while taking advantage of a

reduced atom type representation to alleviate computa-

tional costs.

AVERAGED AND PAIR-WISE
STATISTICAL POTENTIALS

Knowledge-based statistical potentials have been used

extensively and successfully for a variety of problems in

computational biology – protein structure prediction as

well as prediction of interactions of proteins with other

proteins, small molecules, and DNA. They were first intro-

duced three decades ago by Levitt and Warshel9 and

Tanaka and Scheraga10 and further developed by Miya-

zawa and Jernigan,11 Sippl,12 and many others. The inter-

pretation of statistical potentials most often relies either on

statistical Bayesian approaches or on the more energetically

appropriate Inverse Boltzmann Law, but regardless of the

details, the general formulation is as follows:

Estructure ¼
X
i;j

Observed Structurei;j

log
Observed Databasei;j

Referencei;j

� �
; ð1Þ

where i and j are amino acid or atom types. Given a resi-

due or atom-level protein representation with k types, we

define ni as the number of atoms of types i (1. . .k; 0 for

solvent) in one interacting protein, nij as the number of

contacts between two atoms of different types. Numerous

variations on this theme exist in the literature but most

energy expressions take the more specific form

eij ¼ ln
nij

cij
; ð2Þ

where we define ensemble values for native atomic

contacts

nir ¼
Xk
j¼1

nij ; nrr ¼
Xk
i¼1

nir ; N ¼
Xk
i¼1

ni ð3Þ

where the subscript r refers to any protein atom.

In the context of the FFT, where each grid cell can rep-

resent only one atom or residue type, a full pair-wise cal-

culation would require a separate correlation between an

atom/residue type on one protein and all atom/residue

types on the interacting partner. An average contact

energy for each atom type can be defined as

ei ¼
1

nir

Xk
j¼1

eijnij ð4Þ

Calculation of the interaction energy using this kind of

averaged potential can be achieved in a single FFT corre-

lation since the FFT grid can contain all the atom/residue

type labels simultaneously. However, as we will see, the

loss of information upon averaging the potentials also

results in substantial performance cost. In this study, we

propose some approaches that strive to achieve a more

nuanced balance between computational cost and algo-

rithm performance. To do this, we turn our attention to

parts of the above equations, which are often neglected—

the identities of i and j.

OPTIMIZED ATOM TYPE
ALPHABETS

Despite the extensive work on statistical potentials, one

aspect that so far has defied rigorous treatment is the

definition of i and j in Eq. (1). Essentially, this is an issue

of finding an appropriate way to represent protein struc-

tures. Many studies use 20 amino acids—the intuitive

choice. Earliest efforts in this area by Warme and Mor-

gan13 started shortly after statistical potentials for pro-

tein folding were first introduced. Considerable theoreti-

cal work exists on the simplest of alphabets involving just

two groups- the so-called HP (Hydrophobic-Polar)

model.14,15 Most studies have used a variety of chemi-

cal, physical, and biological properties of amino acids

and their functional groups to derive atom type schemes,

while incorporating different investigators’ understanding

of protein energetics.7,16–18 Recently, we addressed this

problem in a rigorous, data-driven manner, deriving

atom type schemes over a range of alphabet sizes from

nonredundant sets of proteins and protein complexes

(http://www.jsbi.org/journal/IBSB04/IBSB04F021.html).19

Briefly, we used mutual information (MI) as an optimi-

zation criterion to find sets of atom types that have the

most distinct (informative) protein environments.

MI ¼
X
i;j

Pði; jÞ log
Pði; jÞ
PðiÞPðjÞ ; ð5Þ

where P(i,j) is the joint probability that an atom of type

i forms a contact with an atom of type j, and P(i) and

P(j) are the marginal probabilities. Note the similarity

Mintseris et al.
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between the definition of MI and the statistical potential

in Eqs. (1) and (2).

Interpretation of the reduced representation problem

in information-theoretic terms is straightforward. MI

between two variables I and J (representing a grouping of

the protein atom types) is a measure of how much infor-

mation one variable reveals about the other. If i and j are

instances of I and J, where the number of such instances

is governed by the size k of the atom type alphabet, we

want to define i and j such that the MI is maximized.

Each instance i or j is a grouping of protein atoms of

one type. It is easy to see from Eq. (5) that if i and j are

chosen randomly, the probability of the joint distribution

would be equal to the product of marginal distributions

resulting in zero MI. On the other extreme, the maxi-

mum possible MI for a given alphabet size can be deter-

mined if we take P(i,j) ¼ P(i) ¼ P(j) ¼ 1/k. Equation

(5) then reduces to:

MImax ¼
X
i;j

PðiÞ log
PðiÞ

PðiÞPðjÞ ¼ logðalphabet sizeÞ ð6Þ

Another way to think about this is to realize that group-

ing atoms with similar biochemical properties—atoms

that are commonly found in protein structures in similar

environments, tends to increase MI by increasing the cer-

tainty that a specific atom type will occur in a given pro-

tein environment. Thus MI is a rigorous and intuitive

measure suitable for optimization.

Notice that MI is also a measure of independence. If

the variables I and J are randomly distributed, they reveal

no information about each other, as shown earlier.

Assuming under a null hypothesis (H0) that I and J are

independent and an alternative hypothesis (H1) that they

are not, it can be shown that a log likelihood ratio test is

exactly equivalent to the definition of MI.20

In the statistical context of the test of independence,

the objective of finding the representation with maxi-

mum MI is equivalent to maximizing the significance of

the test of independence between the atom types. The

problem of finding such an optimal reduced protein rep-

resentation for a given target alphabet size is essentially

equivalent to maximum likelihood estimation. We have a

model as described earlier and a comprehensive non-

redundant dataset of proteins and protein complexes.

The distributions of heavy atoms into a given number of

atom types, or the probabilities of membership of each

heavy atom in an atom type group are the parameters to

estimate. An exhaustive solution to this problem is

impossible: the number of ways of distributing k objects

into m bins grows very quickly. We use Monte Carlo

methods to estimate the best reduced representations by

randomly perturbing the bin memberships and accept-

ing/rejecting based on the Metropolis criterion. This is in

many ways similar to K-means clustering but here we

optimize a metric global to the whole dataset as opposed

to a distance from every point to some cluster center.

Figure 1 shows that optimized MI increases monotoni-

cally with increasing alphabet size. This is to be expected

given the definition of MI in Eq. (5). To get a better

sense of how the optimized MI relates to maximum pos-

sible MI for a given alphabet size [calculated from Eq.

(6)], we also plot the ratio of optimized MI to this maxi-

mum—the effective MI—in Figure 1. The strongest peak

of Effective MI occurs at alphabet of size four, corre-

sponding to hydrophobic, polar, positive, and negative

types.19 This suggests that the major energetic driving

forces in protein interactions are made up of the hydro-

phobic effect and charge interactions. Further subdivid-

ing the atom space into larger alphabets leads to quickly

diminishing returns, with effective MI declining below

the level of the first two atom types past the alphabet of

size 12. The breakdown of these 12 atom types is pre-

sented in supporting Table I and we revisit them later.

INTERFACE ATOMIC CONTACT
ENERGIES

Potentials are based on the idea that the native confor-

mations exist at the global thermodynamic minimum.

The parameters describing the native state are easy to

compute by surveying the current structure databases.

The somewhat controversial part of statistical potentials

is in defining the so-called reference state, which in pro-

tein structure prediction implies the ‘‘unfolded’’ state pre-

sumably at a very high energy.21 Defining such a refer-

ence state is difficult since proteins do not really exist in

completely ‘‘unfolded’’ states under physiological condi-

Figure 1
Maximized mutual information increases monotonically with alphabet size.

Normalizing for maximum information available for a given alphabet size

reveals a peak for atom types. See text for details.
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tions and it is very difficult to determine the properties

of whatever high energy state they do occupy. Interest-

ingly, the definition of a reference state for protein–pro-

tein docking, at least for transient interactions of inde-

pendently folded proteins, is much simpler and less con-

troversial. This goes along with the fact that the

definition of docking decoys is also much more straight-

forward. In docking, we are only making one assump-

tion—that the two (or more) molecules in question, do,

in fact, interact. Given this assumption, the reference

state can be thought of as the average of a distribution of

all possible docking conformations, with all possible sur-

face patches touching each other. For any two proteins, a

large number of such conformations can be generated

using many of the existing docking algorithms relying

just on shape complementarity. However, doing this for a

sufficiently large number of protein complexes is still

rather computationally expensive. Instead, we can define

the reference state mathematically. This can be done sev-

eral ways and we choose to follow the formulation devel-

oped by Miyazawa and Jernigan11 for residue level pro-

tein folding potentials and subsequently adapted for

atom-level potentials.7

Moont et al. identify two simple ways to compute the

reference state - expected residue pairs at the interface of

two interacting proteins6:

cðmole�fractionÞi;j ¼ nrr
ni

N

nj

N
; cðcontact�fractionÞi;j ¼ nrr

nir

N

njr

N

ð7Þ

Using the mole-fraction method, the authors assume

the number of contacts in the reference state to be pro-

portional to the product of the atom types (or residues)

in the pair of proteins. For the contact-fraction method,

the expected reference contacts are proportional to the

propensities of the native contacting atom types (resi-

dues). The most obvious shortcoming of these ap-

proaches with respect to protein docking is that the con-

tact fraction method ignores any portion of the protein

not in contact in a given docking conformation, while

the mole-fraction method incorporates all residues, even

those in the protein core. The authors conclude that the

mole-fraction method performs better in re-ranking

docking predictions.6 This is not surprising since that

approach takes into account a greater fraction of accessi-

ble surface in the protein. To take the next step toward a

more accurate and realistic modeling of protein interac-

tion in terms of statistical potentials, we need to include

only the atoms that are exposed to the solvent and thus

have the potential to become part of the protein inter-

face. We can find these atoms by calculating the average

number of contacts a given atom type is capable of form-

ing when completely buried (coordination number) and

then comparing to the observed number of contacts in

the protein of interest.7,11

As in the previous works, we use atom type-specific

coordination numbers qi to define a relationship between

the number of atoms and the number of atom-atom

contacts within in a 6 Å sphere:

qini ¼
Xk
j¼1

nij þ ni0 ð8Þ

We further define ni0 to represent contacts with water

and then use the definition of coordination number to

derive the solvent-accessible atoms on the surface:

ni0 ¼ qini �
Xk
j¼1

nij ; nr0 ¼
Xk
i¼1

ni0 ð9Þ

We compute the contacts for our reference state repre-

senting all possible contacts between the surface atoms of

the interacting proteins. By extrapolation from Moont

et al.6 this could be called ‘‘surface fraction’’ potential:

csurface�fraction;ij ¼
P

ni0;p1nj0;p2Pk
1 ni0;p1

Pk
1 ni0;p2

� nrr;c ð10Þ

The summations in the above equation run over all

the complexes c and their interacting components p1 and

p2. Combining Eqs. (2) and (10) allows us to define the

Interface Atomic Contact Energies

eIFACE;ij ¼ ln
nij

csurface�fraction;ij

; ð11Þ

The non-redundant set of protein complexes used to

derive the statistical potentials includes 150 complexes.

These complexes were obtained by filtering the list

obtained in Mintseris and Weng8 to remove rigid-body

complexes in the Docking Benchmark.22

To evaluate the effectiveness of various pair potentials

to discriminate near-native protein complexes from

decoys, we used 63 complexes taken from the Protein

Docking Benchmark. These cases were classified as

‘‘rigid-body’’ because of small amount of conformational

change occurring upon binding. We used an early version

of the ZDOCK algorithm,4 which used only shape com-

plementarity to produce 54,000 conformations for each

benchmark case. Forty one of these 63 cases produced at

least one hit and were then re-scored using both the

mole-fraction potential from Moont et al.6 and the sur-

face-fraction potential described above. Both were derived

using our new 150 complex dataset over a range of atom

type alphabets. Results are presented in Figure 2 in terms

of Area under the ROC (Received Operator Characteris-

tic) curve. Clearly, the surface-fraction potential is better

at ranking near-native hits (as defined in Methods) than

the mole fraction potential. The pair-wise potential using

the full matrix is significantly better than the averaged

Mintseris et al.
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one using just a vector to represent atom type-specific

energy preferences (P-value 0.0078 according to the

paired-sample Wilcoxon signed rank test). Finally, we see

in Figure 2 that the effectiveness of all potentials flattens

out at alphabet of size 12. A sample plot of ROC curves

is presented in Supporting Figure 3.

INTEGRATING POTENTIALS INTO
FFT PROTEIN–PROTEIN DOCKING

In the previous version of the ZDOCK algorithm,

shape complementarity (SC), electrostatics (EL), and des-

olvation were incorporated in the FFT framework.4 The

desolvation component of the scoring function was a

simplified version of the ACE energy parameters,7 where

the parameters used were averaged over each atom

type [Eq. (4)], thus allowing the calculation to be com-

pleted in a single FFT correlation. For details, the reader

may refer to the works of Chen and Weng,4,5 Moont

et al.6 as well as the seminal paper by Katchalski-Katzir

et al.3

Briefly, each interacting protein is mapped to a three-

dimensional grid. The cells of the grid are assigned

appropriate values representing qualities of the protein

such as desolvation parameters, partial or full charges, or

values representing surface exposure. A separate 3D func-

tion is needed to represent each of these physical param-

eters but some may be combined by taking advantage of

the real and complex parts and their resulting complex

product. For any given starting orientation of the two

molecules, FFT is then used to speed up the translational

3D search, thus calculating the correlation and the value

of a parameter in question such as shape complementar-

ity, electrostatics, or desolvation.

Here, to take advantage of the information in our

newly derived pair-wise potential energies, we use both

the real and imaginary parts of k/2 FFT correlation func-

tions to compute the sum of all pair-wise energies over k

atom types. To make a fair comparison with previous

ZDOCK versions, we first used the 18 ACE atom types.

Figure 2
Starting with ZDOCK predictions based solely on shape complementarity, the

complexes are reranked based on the mole-fraction potential of Moont et al. as

well as the surface-fraction potential presented in this work. Note that the

performance levels off after 12 atom types and reaches levels slightly higher than

that of the original 20 amino acids

Figure 3
Comparison of (A) success rates and (B) hit countsobtained from different

ZDOCK scoring functions, using 68 sampling. Success rate is defined as the

fraction of tested cases with at least one near-native conformation given some

number of predictions. Hit count is defined as the total number of near-native

conformations among cases tested given some number of predictions.

[Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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Thus, if we define 9 discrete functions for each atom of

type i{1, 3, 5, 7, . . ., 17} in a protein ligand L:

Re½Li� ¼
1 if grid cell is occupied by a ligand atom

of type i

0 otherwise

8><
>:

Im½Li� ¼
1 if grid cell is occupied by a ligand atom

of type ði þ 1Þ

0 otherwise ð12Þ

8><
>:

and 9 discrete functions for each possible atom type i{1,

3, 5, 7, . . ., 17} in contact with a protein receptor R

atom of type j:

Im½Ri� ¼

X
eIFACE;i;j Neighbors within 6 Å;

0 non-neighbor atoms;

8<
:

Re½Ri� ¼

X
eIFACE; ðiþ1Þ; j Neigbbors within 6 Å;

0 non-neighbor atoms ð13Þ

8<
:

The sum of resulting FFT correlations of a cubic grid

will give the total desolvation energy summed over all

atom types

EIFACE ¼
Xk
i¼1

Xk
j¼1

eijnij

ffi
Xk=2

i¼1;3;5;...

X
x

X
y

X
z

Li 3Ri

" #

¼
Xk=2

i¼1;3;5;...

X
x

X
y

X
z

Re½Ri�3 Im½Li� þ Im½Ri�3Re½Li�
" #

ð14Þ

where the imaginary part of the complex product eval-

uated as a result of the correlation accomplishes the sum-

mation of the energy components over atoms in contact.

The new version of the ZDOCK algorithm was imple-

mented in Cþþ to perform in parallel using MPI. We

tested the implementation on 63 rigid-body cases from

the Docking Benchmark. The results, obtained with 68
sampling, are presented in Figure 3 in terms of success

rate and hit count. Success rate is defined as the fraction

of all cases producing at least one near-native hit given a

certain number of predictions. Hit count is the number

of near-native hits obtained given a certain number of

predictions. Near-native hits were assigned as described

in Methods. The first observation to be made from Fig-

ure 3, is that the newly derived potentials perform much

better than ACE across the entire range of allowed pre-

diction numbers (P-value 1.5 3 10�5 when compared

with pair-wise 18 atom type potential). Secondly, when

comparing within the new potential group, pair-wise ver-

sions of the potential outperform the averaged ones (P-

value 0.004 for 18 atom-type IFACE averaged vs. pair-

wise potentials), especially when we allow a small

number of predictions. The probability of a 1st-ranked

near-native hit almost doubles with the pair-wise scoring

scheme [Fig. 3(A)]. Although the performance in success

rate tends to even out with greater number of predic-

tions, the hit rates are clearly higher for the pair-wise

potentials across the range of predictions [Fig. 3(B)].

Thirdly, we note that the difference between pair-wise

potentials with 18 and 12 atom types is not statistically

significant, as was predicted by preliminary analysis in

Figure 2. Detailed breakdown of the 12 optimized atom

types as well as the derived potential is described in Sup-

porting Tables I and II.

PERFORMANCE OF PAIR
POTENTIAL FFT DOCKING ON
ANTIBODY–ANTIGEN CASES

In all the results presented so far, we have not used

any additional biological information, which is often

known to significantly improve the results. In particular,

for antibody-antigen complexes, the common assumption

that the binding of antibody involves the Complementar-

ity Determining Regions (CDRs) usually holds and

points to that relatively small portion of the antibody

surface as the likely binding region. In the CAPRI (Criti-

cal Prediction of Protein Interactions) experiment, most

groups use this assumption successfully. However, as

most groups found out in one of the early CAPRI

rounds, the CDR assumption does not hold absolutely -

a few of the antibody-antigen complexes turned out to

involve the interaction of significant portions of the

framework regions. These special kinds of antibodies are

found in camelids and are made up of a single chain.

The framework residues (non-CDR) of camelid antibod-

ies have been shown to constitute 25–40% of the inter-

face.23 Since most groups restricted the search to CDRs,

predictions for those complexes were not successful.24,25

In order to see the effect of blocking non-CDRs and

to compare this effect across the variations of the algo-

rithm, we repeated the analysis above for the rigid-body

antibody-antigen cases in the benchmark with the non-

CDR residues blocked. To help focus on the differences,

Figure 4 shows the difference in success rate and differ-

ence in hit count, which we obtained by counting the

hits with blocking and subtracting the results in Figure 3.

Figure 4(B) clearly illustrates that the effect of blocking

non-CDR residues decreases for more sophisticated ver-

sions of the algorithm. In other words, the better the

original algorithm, the less useful the additional bio-

logical information. Another striking result evident from

Figures 4(A,B) is the difference of the effect of additional

biological information on the performance of ZDOCK

Mintseris et al.
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with and without pair-wise statistical potentials. The suc-

cess rate plot shows that for pair-wise potentials the

effect is entirely absent across the whole range of allowed

predictions [Fig. 4(A)]. From the hit count plot [Fig.

4(B)], it is clear that no more than 5 additional hits are

obtained across the entire range of allowed predictions—

a very small improvement, when compared with other

versions of the algorithm. Since antibody-antigen com-

plexes make up a substantial fraction of the benchmark

rigid-body test cases, we present the results with these

cases removed in Supporting Figure 1. Results indicate

that other types of complexes also show substantial

improvement.

To further understand the effect of new potentials on

docking antibodies, we visualized the spatial distributions

of hits and noticed that almost all predictions involved

Figure 4
(A) A subset of 20 antibody–antigen complexes was used to compare the effect of blocking non-CDR residues. Success rate (A) and hit count (B) without blocking is

subtracted from that after blocking. Note that the difference is zero for all algorithms at high number of allowed predictions because all algorithms find at least one hit in

both blocked and unblocked versions. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 5
Distribution of top 10000 orientations of lysozyme antigen (red) produced by docking to a Fab (blue) using (A) non-pair-wise (averaged) potential ZDOCK without

blocking non-CDR residues, (B) non-pair-wise (averaged) potential ZDOCK with blocking non-CDR residues, (C) pair-wise potential ZDOCK without blocking non-CDR

residues. The spatial distributions of the antigen are denoted by the location of a single atom in its center. CDRs of the antibody are located near the top of the molecule.

The native antigen structure would be located directly above the center of mass of the antibody.
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the antigen binding in the CDRs of antibodies without

blocking. Figure 5 shows that in a set of representative

results from a Fab-Lysozyme complex, the results of

ZDOCK with pair-wise potentials without blocking are

much more restricted to the CDR than those of non-

pair-wise potential with blocking. The same pattern holds

for most other antibody-antigen cases in the benchmark,

suggesting that the new potentials, perhaps stemming

from the residue preferences in the b-sheet framework

regions of antibodies lead to unfavorable interaction

energies.

Our benchmark contains one representative camelid

antibody-antigen complex - a bound-unbound test case

from CAPRI with framework residues participating in

recognition. A ZDOCK run with pair-wise potentials and

no blocking produced a set of conformations not entirely

restricted to the CDRs (Supporting Fig. 2). Indeed, many

of the top 10,000 complexes include extensive contacts

with the framework regions.

COMPARISON WITH RECENT
STUDY

As this manuscript was under review, a new paper was

published in this journal by Kozakov et al.,26 which mer-

its comparison with the work presented here. The unify-

ing theme in both papers is the move toward using pair-

wise statistical potentials in the FFT framework. Both

manuscripts also acknowledge the importance of refer-

ence state definition in a potential. Kozakov et al. intro-

duce a new class of docking potentials called DARS

(Decoys As Reference State). We believe it is similar in

spirit to our surface fraction approach, although very dif-

ferent in implementation. Kozakov et al. enumerate a

large number of incorrect complex conformations and

use the collected interfaces as an average reference state,

whereas here we use an implicit mathematical model to

achieve a similar goal. They evaluate performance on

enzyme-inhibitor and antibody–antigen subsets of the

old Benchmark 127 and the new (superseding) Bench-

mark 2.22 Because in this work we do not use any clus-

tering or post-processing, direct comparison of the

results is difficult. We could, however, make a direct

comparison between the DARS contact energies pre-

sented in Table I of Kozakov et al. and our Interface ACE

derived using the surface fraction method since both

used the 18 ACE atom types. The correlation between

the two was 0.75 and highly significant with P-value

<0.00001. It improves to 0.79 upon removal of one out-

lier (Supporting Fig. 4). This is remarkable considering

that the correlation between our IFACE derived using the

surface fraction method and the mole fraction method is

only 0.42. This shows that, as we suggested in the IFACE

section above, the mathematical derivation of the surface

fraction method is approximately equivalent to a refer-

ence state obtained from a large number of decoy confor-

mations. It is likely that the remaining difference can be

explained by the different sets of protein complexes used

in the derivation. The set used by Kozakov et al., while

larger, includes many homodimers and obligate hetero-

dimers. The protein complexes of greatest interest to

docking are transient interactions between independently

folding units. They have been shown to have different

evolutionary8 and physico-chemical28 properties. The

protein complexes used here for derivation of potentials

are taken from a curated set of non-redundant transient

protein complexes.

DISCUSSION AND
CONCLUSIONS

Knowledge-based statistical potentials have been used

with some success in various problems in structural com-

putational biology. They have also been used for post-

processing and re-scoring of protein–protein docking

results. Here, we derive the potentials from a curated

high quality non-redundant dataset of transient protein

complexes, based on realistic reference state assumptions,

and show that directly integrating pair-wise potentials

into the FFT docking algorithm results in significant

improvement. Integration of residue-level potentials

would require substantial increases in computational

power but this power is directly proportional to the

complexity of protein representation. We then show that

with an optimally chosen reduced representation, we can

achieve a balance by bringing the computational cost

down while keeping the algorithm performance high.

We also examine the performance of the algorithm on

a subset of antibody-antigen docking cases and find that

our new potentials without any surface blocking perform

as well as the old potentials with additional antibody-

specific biological information. Furthermore, our camelid

example illustrates the power of the pair-wise potential

in dealing with antibody cases, where the extent of

framework residue interaction with antigen is uncertain.

METHODS AND DATA SETS

Datasets

We have previously described a set of non-redundant

transient protein–protein complexes.8 A subset of those

complexes, for which interacting partner have been inde-

pendently crystallized, was used to compile the Protein

Docking Benchmark.22 63 ‘‘rigid-body’’ cases with little

conformational change upon binding were used in this

study for validation of algorithm performance. The data

set used to derive statistical potentials was obtained by

starting with the original transient dataset and removing

cases corresponding to the Benchmark cases, thus ensur-
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ing that the ‘‘training’’ and testing sets do not intersect.

This resulted in a set of 150 complex interfaces.

Derivation of atom type alphabets

For each atom type alphabet of size k, the Monte

Carlo simulation begins by distributing 167 amino acid

atoms into k bins (atom types). At every step, one atom

is taken from a random bin and transferred into a differ-

ent random bin, ensuring that no bins are empty. MI is

calculated from a set of non-redundant protein com-

plexes. The move is accepted or rejected based on the

Metropolis criterion. We ran each simulation for 1 mil-

lion steps using the modified Lam schedule for simulated

annealing.29 Other details have been reported in previ-

ous work (http://www.jsbi.org/journal/IBSB04/IBSB04F021.

html).19

Coordination numbers

To compute coordination numbers for each atom type,

we used a dataset of 808 nonredundant protein structures

with sequence identity < ¼ 20% and resolution of 1.8 Å

or better from the PISCES database.30 Using only atoms

that were completely solvent-inaccessible (as determined

by NACCESS31), we computed the number of contacting

atoms less than 10% accessible within 6.0 Å that do not

belong to chain neighbors. The definition of chain neigh-

bors was taken from Zhang et al., which we believe is

appropriate for atom (rather than residue) level applica-

tions.7 All residues were renumbered using the S2C data-

base32 to ensure correct chain neighbor assignment.

Definition of near-native docking hits

In previous work, a ‘‘hit’’ was usually defined as a

near-native docking conformation with interface RMSD

(iRMSD) < ¼ 2.5 Å. Over the last several years, the

docking community has been using an evolving standard

measure of performance, separately defined for ‘‘high’’,

‘‘medium’’, and ‘‘acceptable’’ hit quality used in the evalu-

ation of Critical Assessment of Prediction of Interactions

(CAPRI) as described in Mendez et al.33 The measure

relies on the combination of RMSD and native contact

fraction criteria. To simplify the criteria, we combine the

definition of ‘‘high’’ and ‘‘medium’’ quality resulting in a

Boolean expression that defines hits as follows:

‘‘high’’ þ ‘‘medium’’ hit

¼ ðiRMSD � 2Å [ IRMSD � 5Å Þ ^ ðfnat � 0:3Þ ð15Þ

In an effort to conform to an emerging standard we

changed our definition of docking ‘‘hits’’ to one that is

more strict and also follows the CAPRI criteria, based on

medium or better quality hits. We made two modifica-

tions to the above definition to make it suitable for this

study. First, we added the additional restriction of fnonnat

to ensure that none of the potential hits have excessive

steric clash (in CAPRI this problem is solved based on

averages of all submitted structures). Second, because

here we focus on rigid-body docking, interface RMSD of

the best possible hit cannot be smaller than that of the

superposed unbound complex. Therefore, we allowed

iRMSD to be no more than 2 Å greater than that best

hit, thus making it independent of the small variations in

the extent of conformational change between different

benchmark cases. The resulting definition is described by

the following Boolean relationship:

Docking hit

¼ ðiRMSD � iRMSDsuperposed unbound complex þ 2 Å Þ
^ ðfnat > 0:3Þ ^ ðfnonnat < 0:7Þ ð16Þ

Here, iRMSD is defined as Ca RMSD of those residues

having at least one atom within 10 Å of the interacting

partner. fnat is the fraction of native contacts defined as

the number of native residue-residue contacts in the pre-

dicted complex divided by the number of contacts in the

target complex. fnon-nat is defined as the number of non-

native (incorrect) residue–residue contacts in the pre-

dicted complex divided by the total number of contacts

in that complex. This latter quantity serves as an indica-

tion of atomic clash between the interface residues in the

predicted complex.

Statistics

Unless otherwise noted, the calculation of statistical

significance for comparisons between potentials was per-

formed with paired-sample Wilcoxon signed rank test.
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