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Abstract

The problem of describing a protein representation by breaking up the amino acids atoms into
functionally similar atom groups has been addressed by many researchers in the past 25 years.
They have used a variety of physical, chemical and biological criteria of varying degrees of rigor to
essentially impose our understanding of protein structures onto various atom-typing schemes used
in studies of protein folding, protein-protein and protein-ligand interactions, and others. Here,
instead, we have chosen to rely primarily on the data and use information-theoretic techniques to
dissect it. We show that we can obtain an optimized protein representation for a given alphabet
size from protein monomers or protein interface datasets that are in agreement with general con-
cepts of protein energetics. Closer inspection of the atom partitions led to interesting observations
pointing to the greater importance of the hydrophobic interactions in protein monomers compared
to interfaces and, conversely, greater importance of polar/charged interaction in protein interfaces.
Comparing the atom partitions from the two datasets we show that the two are strikingly similar
at alphabet size of five, proving that despite some differences, the general energetic concepts are
very similar for folding and binding. Implications for further structural studies are discussed.
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1 Introduction

The ever-increasing wealth of protein structural information has, in turn, spurred researchers to de-
velop a host of new ideas and approaches that use this information to infer, predict and make new
hypotheses about protein structure, function and evolution as well as relationships between proteins
and other molecules in the cell. Applications have included statistical potentials to study and predict
protein folding, protein docking, protein-small molecule and protein-nucleic acid interactions and 3D
structural motif studies, to name a few. In most studies of protein structure, and indeed in any other
modeling study, the first question that a researcher has to face is how to represent the problem. We
will use statistical potentials as an example familiar to many readers.

Knowledge-based statistical potentials have been used in structural studies for almost three decades
starting with their first introduction by Levitt and Warshel [6] and Tanaka and Scheraga [17] and fur-
ther development by Miyazawa and Jernigan [13], Sippl [16] and many others. Discussions of practical
and theoretical advantages and shortcomings of statistical potentials have been numerous, but cur-
rently they remain widely used in the areas of protein structure prediction, protein-protein interaction
studies and docking, as well as protein-small molecule studies. The interpretation of statistical poten-
tials most often relies either on statistical Bayesian approaches or on the more energetically appropriate
Inverse Boltzmann Law, but regardless of the details, the general formulation is as follows:

Estructure =
∑

i,j

Observed Structureij log

(

Observed Databasei,j

Referencei,j

)

, (1)
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where i and j are amino acid or atom types. Numerous variations on this theme exist in the literature.
Despite the extensive work on knowledge-based statistical potentials, we believe there is an aspect

that so far has defied rigorous treatment - specifically the definition of i and j in Eq.(1). Essentially,
this is an issue of finding an appropriate way to represent protein structures. Many studies use the 20
amino acids - the intuitive choice. Earliest efforts in this area started in 1978 - shortly after statistical
potentials for protein folding were first introduced [22]. Considerable theoretical work exists on the
simplest of alphabets involving just two groups - the so-called HP model [4, 18]. On the other extreme,
recent explosion in the number of available nonredundant protein structures made possible studies that
used the largest possible set of atoms, where every atom of every amino acid is defined separately - a
total of 167 heavy atom types [15]. Protein-protein and protein-small molecule studies are not able to
take advantage of the extended atom types due to insufficient data. In fact, even for protein structures,
choosing a subset of the whole protein structure space, such as a fold or a large superfamily, as the
Observed Database would require the use of a reduced atom type set in order to accurately estimate
all the parameters. In this paper we focus on the derivation of such reduced representations and
discuss their implications for our understanding of protein structure energetics. We use two distinct
datasets of protein monomers and protein complexes and demonstrate how protein representations can
point very specifically to the similarities and differences between the forces underlying the biophysical
processes of folding and binding.

2 Information-Theoretic Approach to Optimizing Protein Atom Types

2.1 Datasets

The protein monomer dataset consists of 808 protein structures with sequence identity ≤ 20% and
resolution of 1.8 Å or better from the PISCES database [20]. This nonredundant set is sufficient to
calculate the extended 167x167 pairwise matrix of atomic contacts within a 6 Å cutoff and subsequent
calculations do not require any corrections for under-sampling. In order to get an unbiased dataset,
we did not count contacts with chain neighbors, where chain neighbors for an atom of residue i
were defined as all atoms belonging to residues i − 4 to i + 4 in the protein sequence. To ensure
correct chain neighbor assignment, we carefully renumbered the residues in all structures using the
S2C database [19].

The protein complex dataset includes 327 non-redundant protein complexes involving interaction
between non-identical interacting partners and is an extension of a dataset derived previously [10].
Redundancy is defined on the level of SCOP [14] family, i.e. the dataset was grouped by family-family
interactions and one representative complex was chosen from each group. In addition, we include 122
homodimers from a recently published dataset, non-redundant at 25% sequence identity level [2].

2.2 Information Theory

Cline et al. [3] used an information-theoretic approach to analyze the contributions of several tradi-
tional amino acid-based alphabets using mutual information. Note that the following definition of
mutual information (MI) is similar to that of a statistical potential above:

MI =
∑
i, j

P (i, j) log
P (i, j)

P (i)P (j)
(2)

where P (i, j) is the probability that an atom of type i forms a contact with an atom of type j, and
P(i) and P(j) are the marginal probabilities.

Interpretation of the reduced representation problem in information-theoretic terms is straightfor-
ward. Mutual information between two variables I and J (representing a grouping of the protein atom
types) is a measure of how much information one variable reveals about the other [5]. If i and j are
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Figure 1: Maximized mutual information for all reduced representations from 2 to 40 atom types
starting with 167 heavy atoms. The same optimization procedure was performed using a dataset
of protein monomers and protein-protein complexes. In addition, we calculated mutual information
for other published reduced alphabets: ×ALBERTS4 - 4 atom type representation based on the
standard textbook amino acid grouping of Alberts et al. [1]; ×MS6aa - 6 atom types based on amino
acid grouping by Mirny and Shakhnovich [11] ×ACE18 - 18 atom type representation from Zhang
et al. [23]; ×WM19 - 19 atom type representation based on Warme and Morgan [22]; ×20aa - 20
atom types based on standard amino acids ×LN24 - 24 atom type representation based on Li and
Nussinov [7]; ×SATIS28 - 28 atom type representation based on Snarey et al. [12], and ×MF40 - 40
atom type representation based on Melo and Feytmans [9].
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instances of I and J, where the number of such instances is governed by the size of the atom type
alphabet, we want to define i and j such that the mutual information is maximized. Each instance i
or j is a grouping of protein atoms of one type. It is easy to see from Eq. (2) that if i and j are chosen
randomly, the probability of the joint distribution would be equal to the product of marginal distri-
butions resulting in zero mutual information. On the other extreme, the maximum possible mutual
information for a given alphabet size can be determined if we take P (i, j) = P (i) = P (j). Eq. (2)
then reduces to:

MImax =
∑
i, j

P (i) log
P (i)

P (i)P (j)
= log(alphabet size) (3)

Another way to think about this is to realize that grouping atoms with similar biochemical properties
- atoms that are commonly found in protein structures in similar environments, tends to increase
mutual information by increasing the certainty that a specific atom type will occur in a given protein
environment. Thus mutual information is a rigorous and intuitive measure suitable for optimization.

Notice that mutual information is also a measure of independence. If the variables i and j are
randomly distributed, they reveal no information about each other, as shown above. Assuming under
a null hypothesis (H0) that i and j are independent and an alternative hypothesis (H1) that they are
not, it can be shown that a log likelihood ratio test is exactly equivalent to the definition of mutual
information [3].

In the statistical context of the test of independence, the objective of finding the representation with
maximum mutual information is equivalent to maximizing the significance of the test of independence
between the atom types. The problem of finding such an optimal reduced protein representation for a
given target alphabet size is essentially equivalent to maximum likelihood estimation. We have a model
as described above and a comprehensive nonredundant dataset of proteins and protein complexes. The
distributions of heavy atoms into a given number of atom types, or the probabilities of membership of
each heavy atom in an atom type group are the parameters to estimate. An exhaustive solution to this
problem is impossible: the number of ways of distributing k objects into m bins grows very quickly.
We use Monte Carlo methods to estimate the best reduced representations by randomly perturbing
the bin memberships and accepting/rejecting based on the Metropolis criterion. This is in many ways
similar to K-means clustering but here we optimize a metric global to the whole dataset as opposed
to a distance from every point to some cluster center.

3 Results and Discussion

3.1 Comparison of Reduced Representations

We perform a million steps of Monte Carlo optimization five times for every alphabet size and for
each dataset and keep the maximum. The results are shown in Figure 1. In addition to our results we
have also calculated and included in Figure 1 mutual information for several published atom-typing
schemes. Many authors have made efforts to group protein atoms based on a variety of criteria such
as atoms size (radius), chemical connectivity, semi-rigorous observations of contact correlation, and
general biophysical common sense. Of course, the most popular representation is the one based on the
20 standard amino acids and there has been at least one residue-level clustering study [21]. Much work
has also been done with the simple HP models, grouping the standard amino acids into hydrophobic
and hydrophilic ones. Common textbooks describe 4 groups - positive, negative, polar uncharged,
and non-polar. Note that the atom-typing schemes referred to in Figure 1 represent only a small
sample of such work. Sometimes the researchers make arbitrary choices distinguishing main-chain
and side-chain atoms, and the classification of such amino acids as glycine and proline often differ
substantially in different papers. In other words, there seem to be as many atom-typing schemes as
there are investigators approaching the issue. Using mutual information as a measure of “quality”, the
published “hand-made” atom typing schemes including the traditional 20 amino acid representation
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Figure 2: Mutual information of optimized protein representations from Figure 1 calculated as fraction
of total mutual information possible given the alphabet size (Eq. 3).

as well as “textbook” categorizations are sub-optimal. For alphabet size 20, the mutual information
obtained with the optimal reduced representation for protein complexes is 12.2% higher than the
natural configuration where each of the 167 heavy atoms is assigned to its residue (here we refer to
this configuration as the ‘20aa’ scheme). The analogous figure for protein monomers is 30.6%. Note
also, that this standard representation has substantially higher mutual information than all of the
other published atom type schemes.

Figure 1 shows optimized mutual information monotonically increasing with increasing alphabet
size. This is to be expected given the definition of mutual information in Eq. 2. Figure 2 gives better
sense of how the optimized mutual information relates to maximum possible mutual information for
a given alphabet size as calculated by Eq. 3. We call the ratio of optimized mutual information to
this maximum, effective mutual information. This plot demonstrates some crucial differences as well
as similarities between the two datasets and underlying structural energetics.

For protein monomers, the highest effective mutual information is attained with only two atom
types - the HP model. This is in agreement with many prior observations of the importance of the
hydrophobic effect in protein folding. There is another sharp peak at 5 atom types before effective
mutual information steadily decreases. For protein interfaces, there is only one significant peak at 4
atom types.

Before considering some optimized protein representations in more detail, it is instructive to com-
pare the results for protein monomers and protein interfaces. This involves a comparison between two
partitions of the set of 167 heavy atoms. This problem has been approached in a variety of ways in the
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Figure 3: Comparison of protein representations optimized for protein monomers and protein-protein
complexes.

past. Here, we choose a recent paper that proposes a measure of distance between two partitions of a
set that, unlike most other measures, is a true mathematical metric called the Variation of Information
or VI [8]. This metric also relies on concepts from information theory. A plot of all-against-all VI
distance between optimized atom types from the two datasets is shown in Figure 3. It shows that
the greatest similarity between the optimized representations of the two datasets occurs with both
datasets at alphabet size 2. In other words, the Hydrophobic/Polar subdivision is very similar, even
though we have seen in Figure 2 that the role of the hydrophobic effect is quite different in the con-
text of protein monomers versus that of protein interfaces. Figure 4 shows a detailed breakdown of
the HP model derived from the two datasets. It is evident that the atom type assignments are very
similar and both generally make sense in light of the commonly accepted division of amino acids into
hydrophobic/polar categories. While all atoms of most amino acids belong to the same class, a few,
such as tyrosine and tryptophan are split. In both monomers and complexes, the atoms around the
polar, hydrogen-bonding groups of tyrosine and tryptophan (including most main-chain atoms) are
classified as hydrophilic, while the other portions are hydrophobic.

The other significant VI distance minimum in Figure 3 occurs with both datasets partitioned into
alphabets of size 5. Note that in Figure 2, both protein monomers and protein interfaces exhibited
high effective mutual information for this alphabet size. While the largest peak for protein interfaces
occurs at alphabet size 4, alphabet of size 5 has the second highest effective mutual information.
Figure 5 provides a closer look at the two optimized representations for alphabet of size 5 for each
of the datasets. First, note the remarkable similarity between the atom type assignments derived
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Figure 4: Protein representation for an alphabet size 2 optimized for A: 808 non-redundant protein
monomers; B: 327 non-redundant protein interfaces.

from two completely different datasets. The main difference between the two occurs in the histidine
side chain, the distal end of which is grouped together with the positively charged side chains in the
context of protein monomers and with polar uncharged atoms in the context of protein interfaces.
This duality of histidine is not at all surprising considering that this side-chain may or may not be
positively charged depending on the pH of its environment. Our results here indicate that it perhaps
may be more likely to carry the positive charge in protein monomers than in interfaces.

The atom type breakdown in Figure 5 is in excellent agreement with our biochemical knowledge
of protein structures and confirms our understanding of the importance of hydrophobic, charge, and
polar uncharged interactions to the stability of protein monomers and protein complexes. The five
groups can be classified roughly as follows: (1) hydrophobic side-chains of I, L, V, M and F; (2)
positively charged side-chains of K and R (and H for interfaces); (3) negatively charged side-chains
of D and E (including main-chain atoms for interfaces); (4) all atoms of polar residues N, Q, S, and
T ; main-chain atoms of charged amino acids; G; polar portions of side-chains of Y and W; (5) A, C;
main-chain atoms of hydrophobic amino acids I, L, V, M and F; non-polar portions of Y and W.

The specificity and detail of atom partitions grow with increasing alphabet size and mutual in-
formation. Thus, for instance, in Figure 4, with alphabet of size 2, all atoms of both lysine and
arginine belong to the same group suggesting that the positively charged side-chains are the dominant
features of these amino acids. In Figure 5, with alphabet of size 5, both lysine and arginine atoms are
divided into side-chain and main-chain. However, with alphabet size increasing to about 10 (except
6 for R in interfaces), both amino acids are split into three groups: (1) main-chain; (2) non-polar
aliphatic portion of the side chain; (3) positively charged distal end of the side chain. The fact that
this division appears at higher alphabet size, compared to such residues as tyrosine and tryptophan,
which are divided at size 2, could mean that the latter distinction plays a more important role than
the hydrophobic role of aliphatic portions of the K/R side-chains. Thus when choosing an appropriate
atomic-level protein representation for a particular task, one may want to find a balance between the
number of parameters and the level of detail.
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Figure 5: Protein representation for an alphabet size 5 optimized for A: 808 non-redundant protein
monomers; B: 327 non-redundant protein interfaces.

4 Summary

We have developed methods for atom-typing, or finding an optimized protein representation, using
information theory that are both rigorous and intuitive. The ability to define such atom groups can
be useful for some aspects protein folding, such as side-chain placement, as well as protein-protein
interactions studies and docking. Furthermore, we believe our methods will be useful in defining
atom types for small molecule ligands, which is an important problem in protein-ligand interaction
and QSAR studies. Protein structural motif searches may also benefit from our results. In the
process of our analysis, the atom types have shed light on some aspects of protein folding and binding
confirming the importance of hydrophobic effect and suggesting that polar/charged interactions are
more important in binding. Despite some differences, it is clear from comparing atom partitions from
protein monomer and interface datasets that the forces behind folding and binding are mostly very
similar.
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