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ABSTRACT
Motivation: Computational prediction and analysis of
transcription regulatory regions in DNA sequences has the
potential to accelerate greatly our understanding of how
cellular processes are controlled. We present a hidden
Markov model based method for detecting regulatory
regions in DNA sequences, by searching for clusters of
cis-elements.
Results: When applied to regulatory targets of the
transcription factor LSF, this method achieves a sensitivity
of 67%, while making one prediction per 33 kb of non-
repetitive human genomic sequence. When applied to
muscle specific regulatory regions, we obtain a sensitivity
and prediction rate that compare favorably with one of
the best alternative approaches. Our method, which we
call Cister, can be used to predict different varieties of
regulatory region by searching for clusters of cis-elements
of any type chosen by the user. Cister is simple to use and
is available on the web.
Availability: http://sullivan.bu.edu/∼mfrith/cister.shtml
Contact: mfrith@bu.edu; zhiping@bu.edu

Introduction
The transcription of a eukaryotic gene is controlled by an
intricate choreography of proteins binding to promoter,
enhancer, and repressor sites on the DNA sequence
(Ptashne, 1988; Ptashne and Gann, 1997). Currently
we are extremely far from a predictive understanding
of these interactions (Fickett and Hatzigeorgiou, 1997;
Reese et al., 2000), especially in more complex eukary-
otes. However, an ability to predict which Transcription
Factors (TFs) participate in regulating which regions
of DNA would provide two enormous benefits. First, it
would contribute significantly to the unsolved problem of
finding and accurately delimiting the genes in genomes of
complex eukaryotes such as human. More interestingly,
such an ability would help us understand the detailed
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mechanisms of transcriptional control, telling us when,
where, and under what conditions a gene is transcribed,
and opening up the possibility of therapeutic intervention
in these mechanisms.

The nucleotide binding specificities of many transcrip-
tion factors have been studied, and there are programs
that search for these signature sequence patterns, or
motifs, in DNA sequence. Many of these methods, such
as Matinspector (Quandt et al., 1995), use Position
Specific Scoring matrices (PSSMs) to represent motifs.
However, these programs make far too many predic-
tions, presumably false positives, to be used easily to
understand transcriptional regulation. There is evidence
that, while PSSMs can be used to predict accurately TF
binding sites on DNA strands in vitro, they simply do not
contain all the information for determining their sites of
regulation in vivo (Tronche et al., 1997). Thus, contextual
effects must be important. Two obvious candidates for
important contextual effects are the requirement for
multiple factors to bind DNA and cooperatively regulate
transcription, and the packaging of DNA into chromatin.
Our method addresses the first of these effects, by
searching for clusters of regulatory motifs in the DNA
sequence.

There have been many attempts to predict regulatory
regions in DNA sequences, some based, in one form or
another, on searching for clusters of transcription factor
binding sites. Of course, ‘regulatory region’ is a broad
term encompassing many subcategories. The majority of
these efforts have focused on detecting RNA polymerase II
(Pol II) promoters, itself a large and apparently hetero-
geneous category. Some state-of-the-art Pol II promoter
prediction tools, such as PromoterInspector (Scherf et al.,
2000), do not explicitly consider cis-element motifs at all,
but perform no worse because of it. This may be because
Pol II promoters are too heterogeneous to be detected effi-
ciently using a fixed set of motifs, or because their binding
site organization is poorly understood.

Of the previous methods that consider clusters of TF
binding site motifs, two early attempts to detect Pol II
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promoters are PromoterScan (Prestridge, 1995) and
FunSiteP (Kondrakhin et al., 1995). These programs both
use consensus sequences rather than PSSMs to detect
motifs, so that motifs are treated in a binary fashion
(present or absent), their relative strengths not being
considered. The Logistic Regression Analysis (LRA)
method of Wasserman and Fickett (Wasserman and
Fickett, 1998) uses PSSMs to measure motif strengths,
but it shares with PromoterScan and FunSiteP the ne-
cessity to introduce an ad-hoc window size. Motifs are
considered together if they lie within a sequence segment,
or window, of a certain length, and distances between
motifs are not considered otherwise. A method by Wagner
(1999) treats the distances between motifs in a more
comprehensive way, using a Poisson model, but does
not consider motif strengths. ModelInspector (Frech
et al., 1997) can consider diverse types of regulatory
element, but they must occur in a specific order, and
the distances between them are either specified to lie
in a simple range (Klingenhoff et al., 1999), or are
described by a ‘distance histogram’ with many param-
eters. The intriguing hidden Markov model (HMM)
method of Crowley et al. (1997) estimates all of its
parameters, including which motif types to consider,
from the sequence data. It also treats motifs in a binary
fashion, ignoring weak motifs that do not match the
consensus.

These methods illustrate a variety of advantages and
disadvantages relative to one another. We set out to create
a method that combines their best features, while avoiding
their disadvantages as far as possible. Specifically, our
requirements were that the method should consider both
the strengths of motif hits and the distances between them,
should avoid ad-hoc window sizes or motif score cutoffs,
and should have a small number of parameters to avoid the
danger of over-fitting. We also emphasized ease of use.
The HMM algorithm that we present fulfills all of these
requirements.

We applied our method to search for regulatory sites
of LSF in DNA sequences, and also to detect muscle
specific regulatory regions. The transcription factor LSF is
a member of a small family of DNA-binding proteins, with
strong sequence similarities from human to Drosophila.
In mammals, LSF is uniformly expressed in all cell types
(Swendeman et al., 1994). It binds a repeated DNA
sequence as an obligate tetramer (Murata et al., 1998;
Shirra and Hansen, 1998). In addition, in a tissue-specific
manner, LSF can partner with other types of DNA-binding
proteins to bind novel DNA-binding sites (Jane et al.,
1995; Romerio et al., 1997; Murata et al., 1998; Casolaro
et al., 2000).

Vertebrate LSF (also known as CP2 or LBP-1c) (Lim et
al., 1992; Shirra et al., 1994; Yoon et al., 1994) binds and
regulates a variety of cellular and viral promoters, either

as an activator or repressor of gene expression (Huang et
al., 1990; Kato et al., 1991; Lim et al., 1992; Sundseth
and Hansen, 1992; Lim et al., 1993; Parada et al., 1995;
Romerio et al., 1997; Murata et al., 1998; Casolaro et al.,
2000; Powell et al., 2000). These include the thymidylate
synthase genes in human and mouse fibroblasts (Powell
et al., 2000), the murine alpha-globin gene in erythroid
cells (Lim et al., 1992, 1993), the IL-4 gene in human
T-cells (Casolaro et al., 2000), the chicken alpha-crystallin
gene (Murata et al., 1998), the SV40 major late promoter
(Kim et al., 1987; Huang et al., 1990), and the HIV
long terminal repeat (Yoon et al., 1994; Romerio et al.,
1997).

We suspected that the transcription factors Sp1 and
Ets-1 may be involved in co-regulating transcription with
LSF, since binding sites for these factors have been found
in close proximity to LSF binding sites (Kim et al.,
1987; Dong et al., 2000). The majority of experimentally
determined LSF binding sites lie within 300 bases of
the Transcription Start Site (TSS), although some occur
at more distant locations (see Section Methods). We
decided to focus on predicting LSF regulatory regions
close to TSSs, for fear that cis-element clusters further
from the promoter may have distinct properties. Therefore,
the TATA box motif is likely to be clustered with these
other motifs too. So we searched for regions regulated
by LSF by considering clusters of the four cis-element
types: LSF, Sp1, Ets-1, and the TATA box. LSF binding
sites occur in both orientations relative to the direction of
transcription (Kim et al., 1990; Powell et al., 2000), as do
binding sites for Sp1 (Jones and Tjian, 1985; Ishii et al.,
1986).

We also applied our approach to the muscle specific
regulatory regions that were studied using the LRA
method of Wasserman and Fickett, in order to facilitate
comparison of the two methods, and gain more data on
our method’s performance. Muscle specific regulatory
regions were studied with the LRA approach using PSSMs
representing five types of binding site: those for Mef-2,
Myf, SRF, Tef, and Sp1 (Wasserman and Fickett, 1998). In
that study, two sets of PSSMs were used for these five cis-
elements: one set derived from experimentally determined
binding sites required for gene expression in skeletal
muscle, and the other derived from muscle independent
sources, including in vitro binding studies (Mef-2, Myf
and SRF), and sites from genes not specifically expressed
in muscle (Sp1 and Tef). The muscle derived PSSMs
provide more accurate representations of the binding site
motifs, but since they are constructed from sites in the
sequences that the method will be tested on, the non-
muscle derived PSSMs allow a more strictly non-circular
test. We also used both of these sets of binding site
matrices to test our method.
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METHODS
Data for cis-element nucleotide frequencies and test
sequences
We obtained 19 LSF binding sites supported by experi-
mental evidence, associated with ten genes (Table 1). Fif-
teen of these sites, on nine sequences, were within 300 bp
of a TSS, with the remaining sites in introns or UTRs.
The nine sequences containing LSF sites near the pro-
moter were taken as a positive test set. Eleven Ets-1 sites
were obtained from the ooTFD database (Ghosh, 2000),
excluding artificial and exact duplicate sequences. The 19
LSF motifs were aligned manually, as were the 11 Ets-
1 binding sites. The number of each of the four types of
nucleotide A, C, G and T at each position of the align-
ments was counted, producing matrices that we refer to as
nucleotide count matrices (Table 2). Bucher’s nucleotide
count matrix (Bucher, 1990) derived from 389 sites was
used for the TATA motif, and a matrix for Sp1 based on
108 sites was obtained from the TRANSFAC database (re-
lease 5.0, accession M00196).

Nucleotide count matrices representing the five mus-
cle related cis-elements, and 43 sequences containing
experimentally determined muscle specific regula-
tory regions, were obtained from the website http:
//www.cbil.upenn.edu/MTIR/DATATOC.html (Wasser-
man and Fickett, 1998). Since the muscle derived matrices
were constructed from orthologous pairs of sequences,
we divided all the counts by two. We discovered that the
set of 43 regulatory regions includes many orthologs that
share high levels of sequence identity. Therefore they do
not constitute a sample of independent sequences, and the
results of applying our method to one sequence will be
highly determined by the results obtained for its ortholog.
To avert this problem, we constructed a non-redundant
subset of 27 of the sequences, and this subset was used
to test our method. These sequences comprise 12 from
mouse, 2 from rat, 11 from human, and 2 from chicken.

Data for human genome analysis
We obtained the sequences and annotation from
the 7 October 2000 freeze of the draft human
genome at the University of California at Santa Cruz
(http://genome.ucsc.edu/) (Lander et al., 2001). Repeat-
Masker results were taken from the tables ‘chrN rmask’,
gene predictions from ‘genieAlt’, known genes from
‘genieKnown’, and the GenBank accessions for their
protein products were taken from ‘knownInfo’. The gene
predictions were derived using the program Genie (Kulp
et al., 1996), constrained by EST and protein homology
data. The known genes are a subset of the predicted
genes with further annotation and links to GenBank.
Nearly all of them are derived from the RefSeq portion of
GenBank. The descriptions of the known genes’ protein

products were extracted from their GenPept records.
The genome sequence comprises 2.69 billion sequenced
bases, of which 1.4 billion are nonrepetitive according to
RepeatMasker.

Eukaryotic promoter sequences
The entire set of 1391 eukaryotic promoter sequences
was obtained from the Eukaryotic Promoter Database,
release 66 1 (Perier et al., 2000). The majority of these
promoters (943) are vertebrate, and 613 are mammalian.
For prediction of muscle specific regulatory regions,
sequences of length 300 bases, from −249 to +50 relative
to the TSS, were used. For analysis using the LSF
associated motifs, 2000 bp long sequences from −1499
to +500 were used.

HIDDEN MARKOV MODEL
We use a hidden Markov model (HMM), represented
in Figure 1, to detect cis-element clusters in a DNA se-
quence (the query sequence). The HMM architecture and
transition probabilities represent our prior expectations
concerning the distribution of cis-elements. The emission
probabilities describe the probability of observing the se-
quence data given a particular distribution of cis-elements.
Posterior decoding is used to estimate the locations of
cis-element clusters given the sequence data.

HMM architecture and transition probabilities
The motivation underlying this model is that we expect
to see occasional clusters of cis-elements within a large
ocean of background sequence. The inter-cluster back-
ground state represents this background ‘ocean’. The
model assumes that the distance between clusters is
geometrically distributed with mean g.

In Figure 1, the circles with the label ‘m’ correspond
to positions in the cis-elements, and we refer to them
as ‘motif states’. For purposes of illustration, they are
shown in the figure as a grid with two rows, each row
having three states. In actual fact the number of rows is
equal to twice the number of cis-element types selected by
the user, one for each element on each DNA strand. The
number of states in each row is the number of bases in
the cis-element motif. The transition probabilities to the
start of each row are all set equal to one other: within
a cluster the model expects to see any cis-element on
either strand with equal probability. This equal occurrence
model is partly justified by noting that many cis-elements,
such as Sp1 and LSF, are known to occur on both
strands relative to the transcribed strand. In addition,
there is insufficient experimental data to estimate reliably
the relative frequencies of different cis-element types,
and hence the simplest prior assumption is that their
frequencies are equal. There are some cases, such as
the orientation of the TATA box, where a more complex
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Table 1. Experimentally determined LSF binding sites used to estimate position-specific nucleotide preferences

Sequence GenBank accession Length/bases Number of LSF sites Reference

SV40 NC 001669 5 243 1 Huang et al. (1990)
HIV type 1 NC 001802 9 181 1 Yoon et al. (1994)
Human fos K00650 6 210 1 Volker et al. (1997)
Human ornithine decarboxylase M81740 9 373 1 Volker et al. (1997)
Human beta-polymerase J04201 1 866 1 Weis and Reinberg (1992)
Mouse thymidylate synthase, 5′ region J02617 730 2 Powell et al. (2000)
Mouse alpha-globin V00714 1 441 6 Kim et al. (1990)
Rat fibrinogen gamma-chain X05860 3 299 1 Lim et al. (1993)
Chicken αA-crystallin M17627 6 311 1 Murata et al. (1998)

Not in test set
Mouse thymidylate synthase, 3′ region – – 3 Powell et al. (2000)
Mouse Ea – – 1 Bellorini et al. (1996)

Totals 43 654 19

model might be more appropriate. Since we do not know
a priori which strand is transcribed, the TATA box could
be accommodated by having two alternative sets of motif
and intra-cluster background states, with the TATA box
orientation fixed in the opposite sense in each. Further
details could then be added, such as an initiator motif
downstream from the TATA box. However, our aim was
not detailed prediction of basal Pol II promoters, and so
we kept to the simpler and more general model of figure 1.

The cis-elements in a cluster are not required to
be immediately adjacent to one another, and so the
intra-cluster background state represents stretches of
background sequence that may appear between motifs
within a cluster. The distance between motifs in a cluster
is modeled as a geometric distribution with mean a,
and the number of cis-elements in a cluster is supposed
geometrically distributed with mean b. The following
equations relate the means a, b and g to the HMM
transition probabilities α, β and γ :

α = 1

a + 1

β = 1

b
(1)

γ = 1

g + 1
.

Motif state emission probabilities
The emission probabilities of the motif states correspond
to the nucleotide preferences of each position in the
cis-element. The program takes nucleotide count matrices,
such as those in Table 2, as input. It then follows Laplace’s
rule of succession and adds 1 to each of the counts, and
these are normalized to obtain the emission probabilities
for the motif states.

Table 2. Position specific nucleotide frequency matrices for binding sites of
LSF and Ets-1

LSF Ets-1
Position A C G T A C G T

1 5 0 11 3 6 0 5 0
2 0 17 2 0 0 8 3 0
3 2 0 0 17 7 4 0 0
4 0 0 17 2 0 0 11 0
5 0 1 18 0 0 0 11 0
6 2 3 6 8 11 0 0 0
7 1 2 1 15 8 0 0 3
8 4 6 2 7 0 0 11 0
9 2 3 10 4 0 4 0 7

10 6 6 4 3 3 1 7 0
11 5 1 9 4
12 0 17 2 0
13 1 6 2 10
14 5 1 8 5
15 0 5 14 0

Background emission probabilities
Since DNA sequences can differ significantly in abun-
dance of A, C, G and T from location to location, it is
not obvious how to obtain suitable emission frequencies
for the background states in our model. Options that we
considered include: set them all to 0.25, set them to the
genomic average, set them to the average for the entire
query sequence, and obtain them from a local window
around the position currently being scanned in the query
sequence. We found that the last option gave us the best
results. With the second-to-last option the results could
change significantly just by including more flanking
sequence at the edges of the query.

As the query sequence is scanned base by base, the
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Fig. 1. The HMM used by Cister. The circles and ovals represent
states, and the arrows represent possible transitions between the
states. The labels by the arrows indicate transition probabilities. The
small, unlabeled circles are silent states, as defined in Durbin et al.
(1998).

nucleotide frequencies are counted in a window of length
2W + 1 centered on the current base, where W is a user-
defined parameter. The counts for each nucleotide are
incremented by 1 (Laplace’s rule), and the background
emission probabilities for the current base are obtained
from these counts.

Multipartite cis-elements
Positions in a cis-element can be specified as ‘back-
ground/blank’, in which case they are assigned the same
emission probabilities as the background states. This
option allows multipartite elements to be specified. If
bases flanking the cis-elements are specified as ‘back-
ground/blank’, there will be a motif-dependent minimum
spacing between cis-elements on any one path through the
HMM. This restriction models the occlusion of flanking
bases by an overhanging DNA binding factor.

Treatment of masked bases
The program RepeatMasker was used to mask repetitive
regions of DNA by replacing them with strings of the
letter ‘N’. This procedure raises the question of how Cister
should treat these regions. We addressed this problem
by modifying the HMM emission probabilities, so that
all states have an equal probability, pN, of emitting an
‘N’, and the emission probabilities for the other four
letters were multiplied by 1 − pN. There is no need
to estimate the parameter pN since it cancels entirely
from the posterior probability calculations (equation (2)
in the next section). An alternative solution, giving the
motif states zero probability of emitting ‘N’, appeared to
perform worse (data not shown).

ALGORITHM
The query sequence is analyzed using our HMM with pos-
terior decoding (Durbin et al., 1998). The probability (Pr)
that any path through the HMM is taken and emits the ob-
served sequence can be calculated by multiplying the tran-
sition and emission probabilities. All paths are considered,
and a posterior probability of each base being in any state
is assigned according to the following equation:

Pr(base i is in state s) =

∑
Pr(p)

paths p with base i in state s
∑

Pr(p)
all paths p

. (2)

This calculation can be performed efficiently using the
forward and backward dynamic programming algorithms
(Durbin et al., 1998).

The technique of posterior decoding reflects our intu-
ition of how transcription factors interact with DNA. A
single path through the HMM represents one possible
arrangement of transcription factors binding to the se-
quence at specific locations. If there are two overlapping
motifs in the sequence, they cannot both be selected by
the same path, just as overlapping cis-elements cannot
be bound by their factors simultaneously. However,
alternative paths can pass through both motifs, and the
probabilities of all possible paths are summed to give
the final posterior probability. Therefore, our algorithm
calculates the overall probability that a segment of DNA
interacts with competing transcription factors.

IMPLEMENTATION
This algorithm was implemented as a C program called
‘Cister’ (for cis-element clusTER finder). The time and
memory requirements are linearly dependent upon the
length of the query sequence. The memory requirement
can of course be reduced by splitting a long sequence into
shorter segments. Analysis of the draft human genome,
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1.4 billion bases after masking repetitive regions, required
22 h on a single processor of a DEC alpha ES20.

Web interface
We attached great importance to making this method
easy to use. We therefore constructed a website with
a straightforward form to enter queries, and an intu-
itive graphical display of the results. Three pieces of
information are requested on the input form: a query
sequence, a choice of cis-element types to search for,
and algorithmic parameters. The query sequence can be
specified with a GenBank accession number, or it can
be pasted directly into the form. If GenBank format is
used, annotated coding regions (‘CDS’) will be displayed
along with the cis-element results. Cis-elements can be
chosen from a set of options, or specified by the user as
nucleotide count matrices. These tables are unavoidably
nontrivial to construct, since they require alignment of a
set of trustworthy examples of the cis-element type. In
order to minimize this difficulty, we provide a link to the
356 matrices in the TRANSFAC database (Wingender
et al., 2000), and the matrix information can be directly
cut-and-pasted from there into the Cister form. Sensible
defaults are provided for the algorithmic parameters a, b,
g and W .

Cister displays an intuitive graphical output, illustrated
in Figure 2a. The black curve indicates 1−Pr (inter-cluster
background). It represents the posterior probability that
each base is within a cluster of cis-elements. The colored
lines indicate Pr (position 1 of a cis-element). Motifs on
the + strand are displayed in the upper half of the plot,
and motifs on the − strand are displayed in the lower
half. Figure 2 shows the output for the genome of SV40,
correctly identifying the regulatory region and the LSF
binding site.

RESULTS
Anecdotal example
We were interested to see whether Cister could be used
to find sites of transcriptional regulation by LSF. By
examining the graphical output produced by Cister, it
is clear that the program can make specific and useful
predictions. For example, Figure 2a shows the output for
the genome of the SV40 virus. The regulatory portion at
the beginning of the sequence is correctly identified, and
there is an impressive lack of false positive predictions
anywhere else in the sequence. For comparison, we
also searched this sequence for matches to individual
PSSMs for each of the four cis-elements. For these PSSM
searches, the background nucleotide frequencies were
counted using a sliding window of width 2001, in the
same manner as Cister. Figure 2b shows that strong PSSM
matches can be found at many locations in the sequence.

So Cister reveals the regulatory region much more clearly
than the simple PSSM search.

Systematic evaluation of performance
It is desirable to have a more quantitative measure of the
method’s ability to detect regulatory regions. Performance
is traditionally measured using sensitivity: the percentage
of true cases detected, and specificity: the percentage
of false cases correctly rejected. Of course there is a
tradeoff between these measures. The sensitivity can be
made arbitrarily close to 100% by altering parameters,
at the cost of lowering the specificity. Our parameter
choices gave sensitivities of around 60%, and the method’s
performance is judged by its specificity (or prediction
rate) at this sensitivity level. We measured sensitivity by
examining the percentages of the nine LSF regulatory
regions and the 27 muscle specific sequences that were
identified by Cister. It is harder to get a handle on
the method’s specificity, since we do not have a set
of sequences that are known not to contain regulatory
regions associated with LSF or muscle specific expression.
In this situation it is common to measure a method’s
background prediction rate on a large sequence set, and
argue that a lower prediction rate is more useful, because
it implies a smaller number of hypotheses that need to
be tested experimentally. This sequence set should be
chosen to match the kinds of sequence that the method will
actually be applied to. We take this approach, measuring
Cister’s prediction rate for the draft human genome,
and for 1391 eukaryotic promoters from the Eukaryotic
Promoter Database (EPD). We argue in the discussion
that the method is more appropriately applied to genomic
sequence, but the performance on EPD sequences allows
comparison with the LRA method.

Procedure for defining and evaluating predictions
from cister output
Cister is not appropriate for detecting individual
cis-elements, since it tends to over-predict motifs
within a strong cluster. Moreover, the data on individual
cis-elements within studied regulatory regions is incom-
plete, and we were interested in Cister’s ability to find
the overall cluster. We faced the difficulty that Cister’s
output consists of posterior probability curves, which are
very informative to the human eye, but difficult to assess
rigorously in terms of true positives and false positives.
It was necessary to define an ad-hoc way of extracting
discrete ‘predictions’ of regulatory regions from the Cister
output, and then of declaring them ‘true’ or ‘false’.

Predictions of regulatory regions were defined to occur
at local maxima of the cluster posterior probability curve,
where its value is greater than that at all locations up
to 1200 bases distant, and greater than 0.5. For LSF
regulatory regions, we additionally required an LSF cis-
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(a)

(b)

 

Fig. 2. The results of analyzing the SV40 genome sequence with Cister (a), and using individual PSSM searches for the four cis-elements
(b); Cister parameter settings: a = 35, b = 6, g = 20 000, W = 1000.

element prediction with posterior probability greater than
0.1 to occur within 1200 bases of the local maximum.
For tests of sensitivity using the known LSF regulatory

regions, a prediction was declared a true positive if a
known LSF site occurred within 1200 bases from it. All
other predictions were false positives. No more than one

884



Cis-element cluster detection

true positive was counted per sequence. The 27 muscle
specific regulatory regions are all shorter than 1200 bases
and so false positives are impossible for this test set. The
number 1200 was chosen because some regulatory regions
are known to extend over several kilobases, such as that
of the sea urchin gene Endo16, which covers about 2300
bases upstream of the gene (Arnone and Davidson, 1997).

Parameter choices
Cister has four tunable parameters: a, b, g, and W .
Values for a, b and g should be chosen according
to what typical cis-element clusters are like, i.e. how
many nucleotides they span on average, how many cis-
elements they contain, and the typical distance between
clusters. Unfortunately, the experimental data on known
cis-element clusters is too incomplete to estimate these
parameters, reducing us to intelligent guesswork. For LSF
associated clusters, we chose a = 35, b = 6, g = 50 000,
and W = 1000. The values for a and b are sensible
choices and seem to give good results. We reasoned that
the number of LSF regulatory regions in the genome is
unlikely to be greater than the number of genes, hence the
value for g has the same order of magnitude as the distance
between human genes.

We discovered that the values of g and W exert a
strong influence on the prediction rate and sensitivity. The
prediction rate and sensitivity both rise if g decreases
or if W increases. For g this effect is not surprising,
since high values of g make cis-element clusters less
probable. It appears that when W increases, the HMM
background states capture local variations in nucleotide
frequencies less precisely, so that some regions become
less well modeled by the background states compared to
motif states.

Since most of the 27 muscle regulatory regions are only
300 bases long, W is effectively constrained to values be-
low 150, and lower values of g were used to maintain sen-
sitivity. Alternatively, the posterior probability threshold
of 0.5 could have been lowered for the muscle regions,
but we did not do this. Because many of the muscle reg-
ulatory regions have been localized to within 200 bp, and
since they are detected using five rather than four motifs,
we chose values of a and b that reflect a higher concentra-
tion of cis-elements. For the muscle derived set of motifs,
we used a = 10, b = 10, g = 20 000, and W = 150.
For the nonmuscle derived motifs, we kept the same val-
ues for a, b and W , but it was necessary to reduce g to
1000 to maintain the same sensitivity.

Measurements of sensitivity
The nine LSF test sequences and the 27 muscle sequences
were first processed with RepeatMasker in order to remove
repetitive sequences (Smit and Green, personal commu-
nication), using the ‘slow’ speed/sensitivity setting, and

the ‘DNA source’ setting appropriate to each sequence.
This procedure was used for consistency with the human
genome analysis described below.

A jackknife procedure was applied to the LSF se-
quences. For each sequence, the LSF sites present in its
regulatory region were excluded from the LSF nucleotide
count matrix given to Cister. We confirmed that none of
the sites used to construct the Ets-1 matrix were present in
these regulatory regions. Although we could not make the
same confirmation for the Sp1 and TATA box matrices,
these matrices are constructed from so many sites that
the presence or absence of one or two would make little
difference to the nucleotide emission probabilities.

For the nine LSF sequences, Cister produced six true
positives, finding six out of the nine regulatory regions,
and zero false positives. For our parameter choices, it
failed to make any predictions for chicken αA-crystallin,
mouse alpha globin, and mouse thymidylate synthase.
To pick up these sequences while retaining a reasonable
specificity, it may be necessary to consider additional
types of cis-element. For example, the LSF site in alpha
globin is clustered with sites for NF-E1, NF-5, IRP,
and CP1 (Kim et al., 1990), and the αA-crystallin pro-
moter contains binding sites for AP-1, Pax6, USF, and
CREB/CREM (Ilagan et al., 1999). It is quite possible
that LSF cis-elements appear in more than one type of
regulatory region, and that different cis-element combi-
nations and parameters are appropriate to these different
types. In addition, while W was set to 1000, so that the
base frequencies were counted in windows of size 2001,
the thymidylate synthase and alpha globin sequences
are considerably shorter than 2001 bases. So these two
sequences are penalized by having a lower effective value
for W , and it is quite possible that Cister would detect
these regulatory regions if longer sequences containing
them were available.

Using the muscle derived nucleotide count matrices,
Cister made predictions for 16 out of the 27 muscle
specific regulatory regions. With the nonmuscle derived
matrices, we obtained the same figure of 16 out of 27, or
59%. These sensitivities are comparable to those reported
for the LRA method (see Tables 3a and b).

Human genome analysis
In tests on a portion of the draft human genome sequence,
we found that masking repetitive elements with Repeat-
Masker reduced the number of Cister predictions by about
a factor of 6, even though only 47% of the sequence was
masked. Cister predictions were over-represented in all
three subtypes of repetitive sequence examined: Alu ele-
ments, other interspersed repeats, and especially low com-
plexity/simple repeats (data not shown). We therefore de-
cided to mask all repetitive elements before proceeding
with our analysis.
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Table 3a. Performance of Cister

Motif set Parameter Sensitivity Prediction rate Prediction
settings for human rate for

genomic EPD
sequence sequences

LSF a = 35 6/9 (66%) 1 per 63 kb 15%
b = 6
g = 50 000

W = 1000

Muscle a = 10 16/27 (59%) 1 per 68 kb 2.9%
derived b = 10

g = 20 000
W = 150

Nonmuscle a = 10 16/27 (59%) 1 per 32 kb 5.2%
derived b = 10

g = 1000
W = 150

Table 3b. Performance of the LRA method. Data from Wasserman and
Fickett (1998)

PSSM set Sensitivity Prediction rate for Prediction rate
human genomic for EPD

sequences sequence

Muscle derived 60% 1 per 32 kb 4%
Nonmuscle derived 60% Not reported 13%

The masked human genome sequence was analyzed
with Cister, using the four LSF associated nucleotide
count matrices, the five muscle derived matrices, and
the five nonmuscle derived matrices. In each case, the
same parameter settings were used as for the tests of
sensitivity. With the LSF associated motifs, Cister made
a total of 42 995 predictions: a rate of one prediction
per 33 kb of nonrepetitive sequence, or one per 63 kb
of total sequence. This figure gives an upper limit to
our method’s false positive rate. For the muscle derived
and nonmuscle derived matrices, Cister made 39 770 and
84 185 predictions, respectively. The prediction rate for
the muscle derived matrices is thus one per 35 kb of non
repetitive sequence, or one per 68 kb of total sequence. For
the nonmuscle derived matrices these figures are one per
17 kb of non-repetitive sequence, or one per 32 kb of total
sequence (Table 3a). By way of comparison, the reported
prediction rate for the LRA method using the muscle-
derived PSSMs is one per 32 kb of human genomic
sequence, after masking repetitive elements (Table 3b;
Wasserman and Fickett, 1998). It is not quite clear whether
this rate was measured per unmasked sequence or per total
sequence.

We investigated the predicted LSF regulatory regions
in the human genome in more detail. It seems unlikely
that there are really 43 000 sites of regulation by LSF,
since this figure is greater than recent predictions of
the total number of human genes (Lander et al., 2001;
Venter et al., 2001). Reasoning that true LSF regulatory
regions are likely to be over-represented near gene start
locations, we investigated whether our predictions show
a bias to the vicinity of TSSs. Of the 42 995 predictions,
3028 are less than or equal to 1200 bases distant from a
predicted TSS. We estimated the probability of obtaining
this figure by chance alone. There are 21 968 predicted
TSSs in total. We counted the number of unmasked bases
within a distance of 1200 from a TSS, which comes to
about 2.4% of the total 1.4 billion nucleotides. If 42 995
sites are chosen at random, the mean number falling
within 1200 bases of a TSS is 1053, with a standard
deviation of 32. The probability that 3028 or more sites
lie this close to a TSS is less than 10−12. So the over-
representation of Cister predictions near to TSSs is highly
significant, suggesting that the program has some success
in detecting transcription regulatory signals. Moreover,
the TSS locations are based on tentative gene structure
predictions, which are especially unreliable at the 5′
ends, owing to low EST coverage, and the difficulty of
predicting the extent of the 5′ untranslated region ab initio.
Unfortunately, it is hard to judge what fraction of these
predictions are sites of LSF regulation rather than general
Pol II promoter sites, since we include the ubiquitous
TATA box and Sp1 motifs in our search.

Descriptions from GenPept (Benson et al., 2000)
records were available for 1889 of the genes whose
annotated TSSs are within 1200 bases of a predicted
LSF regulatory region. Ornithine decarboxylase does not
appear in this list, owing to mis-assembly of the draft
genome sequence in the region of the ODC promoter.
We wanted to examine whether this list of genes shows
any bias towards particular functional categories. From
the LocusLink database (Pruitt and Maglott, 2001), we
obtained assignments of 1172 of these genes to functional
categories according to the Gene Ontology scheme
(Ashburner et al., 2000). Unfortunately, after accounting
for multiple testing, we found no significant bias among
our genes towards any one GO category.

Prediction rates for eukaryotic promoters
To make further performance comparisons with the
LRA method, Cister was applied to the 1391 promoter
sequences from the EPD. The three sets of matrices were
used (LSF associated, muscle derived and nonmuscle
derived), with the same parameter settings as for the pre-
vious two tests. For analysis with the muscle derived and
nonmuscle derived matrices, we used EPD sequences of
length 300 bp, since most of the 27 muscle sequences are
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300 bp long, and the parameter W is 150 in these cases.
For the LSF associated matrices, on the other hand, we
used EPD sequences of length 2000 bp. The parameter W
is 1000 in this case, and so shorter EPD sequences would
not provide a fair test, owing to the strong dependence
of Cister’s prediction rate on the size of the window for
counting background nucleotide frequencies.

The results are summarized in Table 3a. With the muscle
derived matrices, Cister made positive predictions for 40
promoters, or 2.9%, compared to 4% reported for the
LRA method. Using the nonmuscle derived matrices, we
obtained 73 predictions, or 5.2%, representing a dramatic
improvement over 13% for the LRA method. The LSF
matrices, on the other hand, gave positive predictions for
213 promoters, or 15%. This much higher prediction rate
is not surprising given that TATA box and Sp1 motifs are
included among the LSF matrices.

DISCUSSION
The results summarized in Table 3 demonstrate that Cister
performs at least as well as, and arguably better than the
LRA method, a well established technique for detecting
clusters of cis-elements. We believe that our algorithm has
two main advantages over the LRA approach: it is not
constrained by an ad-hoc window size of 200 bp for the
regulatory region, and it is able to integrate all possible
motif matches over a region of sequence. A possible
advantage of the LRA method is that its parameters are
trained from positive and negative training sets. It would
be possible to train our HMM transition probabilities from
a positive training set using the Baum–Welch algorithm
(Durbin et al., 1998).

Compared to previous methods that search for clusters
of cis-elements, our method presents an important alterna-
tive. We do not preprocess the query sequence using arbi-
trary cutoffs or segmentation. Our method is able to con-
sider very weak motifs if they are clustered tightly enough,
and widely separated motifs if they are strong enough,
having no cutoff at either of these extremes. Our approach
is the only one we know of with an explicit theory to deal
with overlapping motifs, and to estimate the overall prob-
ability of TFs occupying alternative sets of binding sites
(Fickett and Wasserman, 2000). It also allows for varying
nucleotide composition along a sequence.

Further advantages of Cister are that it is freely available
on the web, it has a user-friendly input form and graphical
output, and it is fast enough to analyze large genomes in
a reasonable amount of time (a day for the draft human
genome on a single DEC alpha processor).

Our algorithm demonstrates a reasonably low prediction
rate for muscle specific regulatory regions on both human
genomic sequence and promoter sequences. Therefore it
is a practical tool for predicting these regulatory regions,
thereby generating hypotheses to guide experiments, on

sequence sets up to perhaps a few megabases in length.
However, it is not yet accurate enough for straightforward
use on a whole genome scale. Cister demonstrates a
similar performance for discriminating LSF regulatory
regions against a background of genomic sequence. Our
use of the TATA box and Sp1 motifs makes the method
less appropriate for discrimination of LSF regulatory
regions from a set of promoter sequences. Realistically,
promoters are hard to identify and the locations of most
human promoters are unknown, and so the real challenge
is to find regulatory regions in genomic sequence, rather
than to discriminate them from a set of promoters.

We did not achieve as high a sensitivity and specificity
as we would like. There are three likely reasons. First,
the regulatory regions that we studied (LSF associated
and muscle specific) might actually consist of several
subtypes with distinct cis-element types and spacings.
Second, related to the first reason, our knowledge of
which other transcription factors co-regulate transcription
with LSF and with the muscle related factors may be
insufficient. To address these problems, Cister can be
used to explore properties of regulatory regions, by
trying several different cis-element combinations, and
settings for the model parameters a, b, and g. Such
investigation may lead to hypotheses about which other
factors are involved in transcriptional regulation by LSF.
Finally, chromatin structural properties may distinguish
true regulatory regions from false positives.

Possible future directions
The HMM approach allows endless flexibility by varying
the model architecture and the transition probabilities. For
example, the cis-elements could be constrained or made
more likely to appear in a certain order.

Phylogenetic footprinting could greatly magnify the
power of this method, by allowing us to consider sequence
conservation between species separated by a suitable evo-
lutionary distance, such as human and mouse. A recent
study successfully combined phylogenetic footprinting
with Gibbs sampling to detect regulatory motifs (Wasser-
man et al., 2000). Our HMM could easily be adapted to
analyze a pair-wise sequence alignment, with the states
emitting pairs of bases instead of single bases. The motif
states would then be given high probabilities of emitting
conserved bases.
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